Menu

Blog

Archive for the ‘particle physics’ category: Page 4

Aug 28, 2024

New research suggests a way to capture physicists’ most wanted particle—gravitons

Posted by in categories: particle physics, quantum physics

A team led by Stevens professor Igor Pikovski has just outlined how to detect single gravitons, thought to be the quantum building blocks of gravity—and making that experiment real should be possible with quantum technology, they suggest, in the near future.

Aug 28, 2024

Reconfigurable sensor can detect particles 0.001 times the wavelength of light

Posted by in categories: materials, particle physics

In recent years, advances in photonics and materials science have led to remarkable developments in sensor technology, pushing the boundaries of what can be detected and measured. Among these innovations, non-Hermitian physics has emerged as a crucial area of research, offering new ways to manipulate light and enhance sensor sensitivity.

Aug 27, 2024

A history of the electron: JJ and GP Thomson

Posted by in category: particle physics

J.J. Thomson won the Nobel Prize in physics in 1906 showing that the electron is a particle: ironically, his son, G.P. Thomson, won the Nobel Prize in physics in 1937 showing that it is not (or rather that the electron can also behave as a wave)


A tale of two Thomsons.

Aug 27, 2024

Using machine learning to speed up simulations of irregularly shaped particles

Posted by in categories: particle physics, robotics/AI

Simulating particles is a relatively simple task when those particles are spherical. In the real world, however, most particles are not perfect spheres, but take on irregular and varying shapes and sizes. Simulating these particles becomes a much more challenging and time-consuming task.

Aug 27, 2024

Physicists ease path to entanglement for quantum sensing

Posted by in categories: particle physics, quantum physics

Nothing in science can be achieved or understood without measurement. Today, thanks to advances in quantum sensing, scientists can measure things that were once impossible to even imagine: vibrations of atoms, properties of individual photons, fluctuations associated with gravitational waves.

Aug 26, 2024

New bosons: CERN’s anomalies could bring us closer to novel particles

Posted by in category: particle physics

A groundbreaking study explores anomalies in particle physics experiments, suggesting the existence of new bosons.

Aug 26, 2024

Massive Solar Wind Disturbance caused Earth’s Magnetosphere to Fly Without its Usual Tail

Posted by in categories: particle physics, space, sustainability

Like a supersonic jet being blasted with high-speed winds, Earth is constantly being bombarded by a stream of charged particles from the sun known as solar wind.

Just like wind around a jet or water around a boat, these solar wind streams curve around Earth’s magnetic field, or magnetosphere, forming on the sunward side of the magnetosphere a front called a bow shock and stretching it into a wind sock shape with a long tail on the nightside.

Dramatic changes to the solar wind alter the structure and dynamics of the magnetosphere. An example of such changes provides a glimpse into the behavior of other bodies in space, such as Jupiter’s moons and extrasolar planets.

Aug 26, 2024

Heaviest antimatter observation yet will fine-tune numbers for dark matter search

Posted by in categories: cosmology, particle physics

In experiments at the Brookhaven National Lab in the US, an international team of physicists has detected the heaviest “anti-nuclei” ever seen. The tiny, short-lived objects are composed of exotic antimatter particles.

Aug 25, 2024

Advances in Two-dimensional (2D) Inorganic Chiral Materials and 2D Organic-inorganic Hybrid Chiral Materials

Posted by in categories: chemistry, computing, particle physics

Recently, two-dimensional (2D) materials have gained immense attention, as they are promising in various application fields, such as energy storage, thermal management, photodetectors, catalysis, field-effect transistors, and photovoltaic modules. These merits of 2D materials are attributed to their unique structure and properties. Chirality is an intrinsic property of a substance, which means the substance can not overlap with its mirror image. Significant progress has been made in chiral science, for chirality uniquely influences a chiral substance’s performance. With the rapid development of chiral science, it became unveiled that chirality not only exists in chiral organic molecules but can also be induced in 2D inorganic materials and 2D organic-inorganic hybrid materials by breaking the chiral symmetry within their framework to form 2D chiral materials. Compared with 2D materials that do not have chirality, these 2D inorganic chiral materials and 2D organic-inorganic hybrid chiral materials exhibit innovative performance due to chiral symmetry breaking. Nevertheless, at present, only a fraction of work is available which comprehensively sums up the progress of these promising 2D chiral materials. Thus, given their high potential, it is urgent to summarize these newly developed 2D chiral materials comprehensively. In the current study, to feature and highlight their major significance, the recent progress of 2D inorganic materials and 2D organic-inorganic hybrid materials from their chemical composition and categories, application potential associated with their unique properties, and present synthesis strategies to fabricate them along with discussion concerning the development challenges and their bright future were reviewed. This review is anticipated to be instructive and provide a high understanding of advanced functional 2D materials with chirality.

Keywords: Chirality, two-dimensional, inorganic, organic-inorganic hybrid, asymmetric, enantioselective, chiral-induced spin selectivity (CISS), photoelectronic, spintronics.

Aug 25, 2024

Quantum entanglement: A simple way to fully grasp this ‘impossible’ concept

Posted by in categories: mathematics, particle physics, quantum physics

Measurement in quantum mechanics presents unique challenges. Observing one particle in an entangled pair determines the states of both, leading to critical inquiries: What constitutes a ‘measurement,’ and how does it influence our understanding of reality?

The complex mathematics underpinning quantum mechanics — incorporating concepts like Hilbert spaces, wave functions, and operators — can be intimidating, rendering entanglement less accessible to many.

Simply put, quantum entanglement is just too complicated for most people to fully understand. It defies classical intuitions, involves sophisticated mathematics, and urges us to reevaluate our understanding of reality.

Page 4 of 56612345678Last