Menu

Blog

Archive for the ‘particle physics’ category: Page 330

Jan 7, 2021

Researchers question fundamental study on the Kondo effect

Posted by in categories: computing, particle physics, quantum physics

The Kondo effect influences the electrical resistance of metals at low temperatures and generates complex electronic and magnetic orders. Novel concepts for data storage and processing, such as using quantum dots, are based on this. In 1998, researchers from the United States published spectroscopic studies on the Kondo effect using scanning tunneling microscopy, which are considered ground-breaking and have triggered countless others of a similar kind. Many of these studies may have to be re-examined now that Jülich researchers have shown that the Kondo effect cannot be proven beyond doubt by this method. Instead, another phenomenon is creating precisely the spectroscopic ‘fingerprint’ that was previously attributed to the Kondo effect.

Normally the resistance of metals decreases as the temperature drops. The Kondo effect causes it to rise again below a threshold value typical to the material in question, the so-called Kondo temperature. This phenomenon occurs when magnetic foreign atoms, such as iron, contaminate non-magnetic host metals, such as copper. Simply put, when a current flows, the atomic nuclei are engulfed by electrons. The iron atoms have a quantum mechanical magnetic moment. This causes the electrons in the vicinity to align their spin antiparallel to the moment of the atom at low temperatures and to hang around the cobalt atom like a cloud on a mountaintop. This hinders the flow of the electrons—the electrical resistance then increases. In physics, this is known as entanglement, the strong coupling of the moment of the impurity with the spins of the surrounding electrons.

Jan 7, 2021

2020’s Biggest Breakthroughs in Math and Computer Science

Posted by in categories: computing, mathematics, particle physics, quantum physics, science

For mathematicians and computer scientists, 2020 was full of discipline-spanning discoveries and celebrations of creativity. We’d like to take a moment to recognize some of these achievements.

1. A landmark proof simply titled MIP = RE” establishes that quantum computers calculating with entangled qubits can theoretically verify the answers to an enormous set of problems. Along the way, the five computer scientists who authored the proof also answered two other major questions: Tsirelson’s problem in physics, about models of particle entanglement, and a problem in pure mathematics called the Connes embedding conjecture.

Continue reading “2020’s Biggest Breakthroughs in Math and Computer Science” »

Jan 7, 2021

Quantum Nanodevice Can Be Both a Heat Engine and Refrigerator at the Same Time

Posted by in categories: nanotechnology, particle physics, quantum physics

A multitasking nanomachine that can act as a heat engine and a refrigerator at the same time has been created by RIKEN engineers. The device is one of the first to test how quantum effects, which govern the behavior of particles on the smallest scale, might one day be exploited to enhance the performance of nanotechnologies.

Conventional heat engines and refrigerators work by connecting two pools of fluid. Compressing one pool causes its fluid to heat up, while rapidly expanding the other pool cools its fluid. If these operations are done in a periodic cycle, the pools will exchange energy and the system can be used as either a heat engine or a fridge.

It would be impossible to set up a macroscale machine that does both tasks simultaneously—nor would engineers want to, says Keiji Ono of the RIKEN Advanced Device Laboratory. “Combining a traditional heat engine with a refrigerator would make it a completely useless machine,” he says. “It wouldn’t know what to do.”

Jan 6, 2021

Study demonstrates the quenching of an antiferromagnet into high resistivity states

Posted by in categories: materials, particle physics

Antiferromagnetism is a type of magnetism in which parallel but opposing spins occur spontaneously within a material. Antiferromagnets, materials that exhibit antiferromagnetism, have advantageous characteristics that make them particularly promising for fabricating spintronic devices.

In contrast with conventional electronic devices, which use the electrical charge of electrons to encode information, spintronics process information leveraging the intrinsic angular momentum of electrons, a property known as “spin.” Due to their ultrafast nature, their insensitivity to and their lack of magnetic stray fields, antiferromagnets could be particularly desirable for the development of spintronic devices.

Despite their advantages and their ability to store information, most simple antiferromagnets have weak readout magnetoresistivity signals. Moreover, so far physicists have been unable to change the magnetic order of antiferromagnets using optical techniques, which could ultimately allow device engineers to exploit these materials’ ultrafast nature.

Jan 6, 2021

Groundbreaking Experiment Tracks the Real-Time Transport of Individual Molecules

Posted by in categories: materials, particle physics

Oak Ridge National Laboratory’s Center for Nanophase Materials Sciences, or CNMS, contributed to a groundbreaking experiment published in Science that tracks the real-time transport of individual molecules.

A team led by the University of Graz, Austria, used unique four-probe scanning tunneling microscopy, or STM, to move a single molecule between two independent probes and observe it disappear from one point and instantaneously reappear at the other.

The STM, made available via the CNMS user program, operates under an applied voltage, scanning material surfaces with a sharp probe that can move atoms and molecules by nudging them a few nanometers at a time. This instrument made it possible to send and receive dibromoterfluorene molecules 150 nanometers across a silver surface with unprecedented control.

Jan 6, 2021

Relativistic quasiparticles tunnel through barrier with 100% transmission, verifying century-old prediction

Posted by in categories: particle physics, quantum physics

“Klein tunnelling” has been observed directly for the first time.


A curious effect called “Klein tunnelling” has been observed for the first time in an experiment involving sound waves in a phononic crystal. As well as confirming the century-old prediction that relativistic particles (those travelling at speeds approaching the speed of light) can pass through an energy barrier with 100% transmission, the research done in China and the US could lead to better sonar and ultrasound imaging.

Quantum tunnelling refers to the ability of a particle to pass through a potential-energy barrier, despite having insufficient energy to cross if the system is described by classical physics. Tunnelling is a result of wave–particle duality in quantum mechanics, whereby the wave function of a particle extends into and beyond a barrier.

Continue reading “Relativistic quasiparticles tunnel through barrier with 100% transmission, verifying century-old prediction” »

Jan 6, 2021

Convex to concave: More metasurface moiré results in wide-range lens

Posted by in categories: computing, drones, engineering, mobile phones, particle physics, virtual reality

The odd, wavy pattern that results from viewing certain phone or computer screens through polarized glasses has led researchers to take a step toward thinner, lighter-weight lenses. Called moiré, the pattern is made by laying one material with opaque and translucent parts at an angle over another material of similar contrast.

A team of researchers from Tokyo University of Agriculture and Technology, TUAT, in Japan have demonstrated that moiré metalenses—tiny, patterned lenses composed of artificial ‘meta’ atoms—can tune along a wider range than previously seen. They published their results on November 23 in Optics Express.

“Metalenses have attracted a lot of interest because they are so thin and lightweight, and could be used in ultra-compact imaging systems, like future smart phones, virtual reality goggles, drones or microbots,” said paper author Kentaro Iwami, associate professor in the TUAT Department of Mechanical Systems Engineering.

Jan 5, 2021

An eye on experiments that make quantum mechanics visible

Posted by in categories: particle physics, quantum physics, space

The human eye is a surprisingly good photon detector. What can it spy of the line between the quantum and classical worlds?


I spent a lot of time in the dark in graduate school. Not just because I was learning the field of quantum optics – where we usually deal with one particle of light or photon at a time – but because my research used my own eyes as a measurement tool. I was studying how humans perceive the smallest amounts of light, and I was the first test subject every time.

I conducted these experiments in a closet-sized room on the eighth floor of the psychology department at the University of Illinois, working alongside my graduate advisor, Paul Kwiat, and psychologist Ranxiao Frances Wang. The space was equipped with special blackout curtains and a sealed door to achieve total darkness. For six years, I spent countless hours in that room, sitting in an uncomfortable chair with my head supported in a chin rest, focusing on dim, red crosshairs, and waiting for tiny flashes delivered by the most precise light source ever built for human vision research. My goal was to quantify how I (and other volunteer observers) perceived flashes of light from a few hundred photons down to just one photon.

Continue reading “An eye on experiments that make quantum mechanics visible” »

Jan 4, 2021

A NASA Spacecraft May Have Detected A Giant Wall At The Edge Of The Solar System

Posted by in categories: particle physics, space

A membrane between what is inside the solar system and the outside. 😃


NASA‘s New Horizons spacecraft has helped scientists study a mysterious phenomenon at the edge of the Solar System, where particles from the Sun and interstellar space interact.

This region, about 100 times further from the Sun than Earth, is where uncharged hydrogen atoms from interstellar space meet charged particles from our Sun. The latter extend out from our Sun in a bubble called the heliosphere.

Continue reading “A NASA Spacecraft May Have Detected A Giant Wall At The Edge Of The Solar System” »

Jan 4, 2021

Researchers isolate single artificial atoms in silicon

Posted by in categories: particle physics, quantum physics

Silicon has proved to be a highly valuable and reliable material for fabricating a variety of technologies, including quantum devices. In recent years, researchers have also been investigating the possible advantages of using individual artificial atoms to enhance the performance of silicon-based integrated quantum circuits. So far, however, single qubits with an optical interface have proved difficult to isolate in silicon.

Researchers at Université de Montpellier and CNRS, University Leipzig and other universities in Europe have recently successfully isolated single, optically active artificial atoms in for the first time. Their paper, published in Nature Electronics, could have important implications for the development of new silicon-based quantum optics devices.

“Our study was born from the will to isolate new individual artificial atoms with a telecom in a material suitable for large-scale industrial processes,” Anaïs Dr.éau, one of the researchers who carried out the study, told TechXplore. “We are used to investigating these quantum systems, but in wide-bandgap semiconductors, such as diamond or hexagonal boron nitride. Although silicon is the most widespread material within the microelectronics industry, so far no light emitter has been reported in this small-bandgap semiconductor.”