Toggle light / dark theme

Microplastics still slip through wastewater treatment plants, carrying pollutants and threatening long-term health

Despite advances in wastewater treatment, tiny plastic particles called microplastics are still slipping through, posing potential health and environmental hazards, according to new research from The University of Texas at Arlington.

Because plastic is inexpensive to produce yet lightweight and sturdy, manufacturers have found it ideal for use in nearly every consumer good, from food and beverage packaging to clothing and beauty products. The downside is that when a plastic item reaches the end of its useful life, it never truly disappears. Instead, it breaks down into smaller and smaller pieces called microplastics—particles five millimeters or less, about the width of a pencil eraser—that end up in our soil and water.

“What our systematic literature review found is that while most facilities significantly reduce microplastics loads, complete removal remains unattainable with current technologies,” said Un-Jung Kim, assistant professor of Earth and environmental sciences at UT Arlington and senior author of the study published in Science of the Total Environment.

Quantum Sensors That Hear Magnetic Whispers — And Push Physics to Its Limit

Quantum magnetometers can detect incredibly small changes in magnetic fields by tapping into the strange and powerful features of quantum physics. These devices rely on the discrete nature and coherence of quantum particles—behaviors that give them a major edge over classical sensors. But how far can their sensitivity go? And what actually makes a magnetometer “quantum?”

A new study explores the theoretical boundaries of these devices, comparing multiple methods for defining their limits. The findings shed light not only on performance but also on what truly separates quantum sensors from their classical counterparts.

Quantum Magnetometers and Ultra-High Sensitivity.

Rethinking neutron star mergers: Study explores the effects of magnetic fields on their oscillating frequencies

Neutron star mergers are collisions between neutron stars, the collapsed cores of what were once massive supergiant stars. These mergers are known to generate gravitational waves, energy-carrying waves propagating through a gravitational field, which emerge from the acceleration or disturbance of a massive body.

Collisions between neutron stars have been the topic of many theoretical physics studies, as a deeper understanding of these events could yield interesting insights into how matter behaves at extreme densities. The behavior of matter at extremely high densities is currently described by a known as the equation of state (EoS).

Recent astrophysics research has explored the possibility that EoS features, such as or a quark-hadron crossover, could be inferred from the gravitational wave spectrum observed after neuron stars have merged. However, most of these theoretical works did not consider the effects of magnetic fields on this spectrum.

Quantum Telepathy Goes Real: How Lasers and Ions Outsmarted Logic

Physicists have successfully played a mind-bending “quantum game” using a real-world quantum computer, in which lasers shuffle around ions on a chip to explore the strange behavior of qubits. By creating a special, knotted structure of entangled particles, the team demonstrated that today’s quant

Meet the Quadruplon: Scientists Discover a New Four-Body Quantum Particle

Scientists have discovered a new four-body quasi-particle, the quadruplon, in a 2D semiconductor. Using laser experiments and advanced theory, they identified unique spectral features unexplained by existing models, confirming the quadruplon’s existence. A central goal of physics is to understand