Menu

Blog

Archive for the ‘particle physics’ category: Page 277

Nov 26, 2021

Solving a Cosmic Conundrum: “Perfect Fluid” Brings Us Closer to Understanding How Our Universe Began

Posted by in category: particle physics

How to Catch a Perfect Wave: Scientists Take a Closer Look Inside the Perfect Fluid

Berkeley Lab research brings us closer to understanding how our universe began.

Scientists have reported new clues to solving a cosmic conundrum: How the quark-gluon plasma.

Continue reading “Solving a Cosmic Conundrum: ‘Perfect Fluid’ Brings Us Closer to Understanding How Our Universe Began” »

Nov 25, 2021

Negative Energy, Quantum Information and Causality — Adam Levine

Posted by in categories: engineering, information science, particle physics, quantum physics

Friends Lunch with a Member.

Topic: Negative Energy, Quantum Information and Causality.
Speaker: Adam Levine.
Date: November 19, 2021

Continue reading “Negative Energy, Quantum Information and Causality — Adam Levine” »

Nov 25, 2021

“Ghost particles” detected in the Large Hadron Collider for first time

Posted by in categories: particle physics, space

Physicists have detected “ghost particles” in the Large Hadron Collider for the first time. An experiment called FASER picked up telltale signals of neutrinos being produced in particle collisions, which can help scientists better understand key physics.

Neutrinos are elementary particles that are electrically neutral, extremely light and rarely interact with particles of matter. That makes them tricky to detect, even though they’re very common – in fact, there are billions of neutrinos streaming through your body right now. Because of this, they’re often described as ghost particles.

Neutrinos are produced in stars, supernovae, quasars. radioactive decay and from cosmic rays interacting with atoms in the Earth’s atmosphere. It’s long been thought that particle accelerators like the LHC should be making them too, but without the right instruments they would just zip away undetected.

Nov 25, 2021

Science, industry team up in Italy to zap virus with laser

Posted by in categories: bioengineering, biotech/medical, genetics, particle physics, science

ROME, July 2 (Reuters) — A United Nations-backed scientific research centre has teamed up with an Italian tech firm to explore whether laser light can be used to kill coronavirus particles suspended in the air and help keep indoor spaces safe.

The joint effort between the International Centre for Genetic Engineering and Biotechnology (ICGEB) of Trieste, a city in the north of Italy, and the nearby Eltech K-Laser company, was launched last year as COVID-19 was battering the country.

They created a device that forces air through a sterilization chamber which contains a laser beam filter that pulverizes viruses and bacteria.

Nov 25, 2021

New Particles Discovered that Provide Answers to Dark Matter Comsic Riddle

Posted by in categories: cosmology, education, particle physics

#Universe #Documentary #Space.

Join this channel to get access to perks:
https://www.youtube.com/channel/UC1ulZ3lMW1mU6sZSqcxDWEw/join

Nov 25, 2021

Quantum double-slit experiment done with molecules for the first time

Posted by in categories: particle physics, quantum physics

Researchers prepare ‘new type of matter’ to conduct classic wave-particle duality experiment.


The iconic quantum double-slit experiment, which reveals how matter can behave like waves that displays interference and superposition, has for the first time been demonstrated with individual molecules as the slits.

Richard Feynman once said that the double-slit experiment reveals the central puzzles of quantum mechanics, putting us ‘up against the paradoxes and mysteries and peculiarities of nature’.

Continue reading “Quantum double-slit experiment done with molecules for the first time” »

Nov 25, 2021

AI-Scientists May Usher in A Bright Future in the Search for Extraterrestrial Intelligence

Posted by in categories: alien life, particle physics, policy, robotics/AI

It’s almost Time to use our AI Brothers to search for and Welcome our Space Brothers. Welcome AI and Space friends.


The best public policy is shaped by scientific evidence. Although obvious in retrospect, scientists often fail to follow this dictum. The refusal to admit anomalies as evidence that our knowledge base may have missed something important about reality stems from our ego. However, what will happen when artificial intelligence plays a starring role in the analysis of data? Will these future ‘AI-scientists’ alter the way information is processed and understood, all without human bias?

The mainstream of physics routinely embarks on speculations. For example, we invested 7.5 billion Euros in the Large Hadron Collider with the hope of finding Supersymmetry 0, without success. We invested hundreds of millions of dollars in the search for Weakly Interacting Massive Particles (WIMPs) as dark matter 0, and four decades later, we have been unsuccessful. In retrospect, these were searches in the dark. But one wonders why they were endorsed by the mainstream scientific community while less speculative searches are not?

Continue reading “AI-Scientists May Usher in A Bright Future in the Search for Extraterrestrial Intelligence” »

Nov 24, 2021

Emergent Matter Scientists Successfully Manipulate a Single Skyrmion at Room Temperature

Posted by in categories: computing, particle physics

Scientists from the RIKEN Center for Emergent Matter Science and collaborators have shown that they can manipulate single skyrmions—tiny magnetic vortices that could be used as computing bits in future ultra-dense information storage devices—using pulses of electric current, at room temperature.

Skyrmions—tiny particles that can be moved under small electric currents several orders lower than those used for driving magnetic domain walls—are being studied in the hope of developing promising applications in data storage devices with low energy consumption. The key to creating spintronics devices is the ability to effectively manipulate, and measure, a single tiny vortex.

Most research to date has focused on the dynamics for skyrmions a micrometer or more in size or skyrmion clusters stabilized below room temperature. For the current research, published in Nature Communications, the researchers used a thin magnetic plate made up of a compound of cobalt, zinc, and manganese, Co9Zn9Mn2, which is known as a chiral-lattice magnet. They directly observed the dynamics of a single skyrmion, with a size of 100 nanometers, at room temperature using Lorentz transmission electron microscopy. They were able to track the motions of the skyrmion and control its Hall motion directions by flipping the magnetic field, when they subjected it to ultrafast pulses of electric current—on the scale of nanoseconds.

Nov 24, 2021

256-qubit Quantum Computer Unveiled

Posted by in categories: computing, particle physics, quantum physics

The first 256-qubit quantum computer has been announced by startup company QuEra, founded by MIT and Harvard scientists.

QuEra Computing Inc. – a new Boston, Massachusetts-based company – has emerged from stealth mode with $17 million in funding and has completed the assembly of a 256-qubit device. Its funders include Japanese e-commerce giant Rakuten, Day One Ventures, Frontiers Capital, and the leading tech investors Serguei Beloussov and Paul Maritz. The company recently received a DARPA award, and has already generated $11 million in revenue.

QuEra Computing recently achieved ground-breaking research on neutral atoms, developed at Harvard University and the Massachusetts Institute of Technology, which is being used as the basis for a highly scalable, programmable quantum computer solution. The QuEra team is aiming to build the world’s most powerful quantum computers to take on computational tasks that are currently deemed impossibly hard.

Nov 24, 2021

A new artificial material mimics quantum-entangled rare earth compounds

Posted by in categories: computing, particle physics, quantum physics

Physicists have created a new ultra-thin, two-layer material with quantum properties that normally require rare earth compounds. This material, which is relatively easy to make and does not contain rare earth metals, could provide a new platform for quantum computing and advance research into unconventional superconductivity and quantum criticality.

The researchers showed that by starting from seemingly common materials, a radically new quantum state of matter can appear. The discovery emerged from their efforts to create a quantum spin liquid which they could use to investigate emergent quantum phenomena such as gauge theory. This involves fabricating a single layer of atomically thin tantalum disulphide, but the process also creates islands that consist of two layers.

Continue reading “A new artificial material mimics quantum-entangled rare earth compounds” »