Menu

Blog

Archive for the ‘particle physics’ category: Page 261

Feb 17, 2022

Examining the results of new dark matter searches by the PandaX-4T and ADMX collaborations

Posted by in categories: cosmology, particle physics

Physicists have predicted the existence of dark matter, a material that does not absorb, emit or reflect light, for decades. While there is now significant evidence hinting to the existence of dark matter in the universe, as it was never directed detected before its composition remains unknown.

In recent years, researchers worldwide have made different hypotheses about the composition of this elusive material and tried to test them experimentally. Many have suggested that it could be comprised of new and previously unobserved types of elementary particles, such as axions and weakly interactive massive particles (WIMPs).

A few weeks ago, two large research collaborations, the PandaX-4T and the ADMX Collaborations, published the results of two new dark matter searches based on different hypothesis. In their study, featured in Physical Review Letters, the PandaX-4T Collaboration tried searching for signs of a new elementary particle in data collected using a time projection chamber at the China Jinping Underground Laboratory (CJPL), the deepest underground lab in world.

Feb 17, 2022

Most precise atomic clock shows Einstein’s general relativity is right

Posted by in categories: particle physics, quantum physics

The world’s most precise atomic clock has confirmed that the time dilation predicted by Albert Einstein’s theory of general relativity works on the scale of millimetres.

Physicists have been unable to unite quantum mechanics – a theory that describes matter at the smallest scales – with general relativity, which predicts the behaviour of objects at the largest cosmic scales, including how gravity bends space-time. Because gravity is weak over small distances, it is hard to measure relativity on small scales.

But atomic clocks, which count seconds by measuring the frequency of radiation emitted when electrons around an atom change energy states, can detect these minute gravitational effects.

Feb 15, 2022

Physicists Just Achieved a New Smallest Measurement of a Ghost Particle’s Mass

Posted by in category: particle physics

Decaying isotopes of hydrogen have just given us the smallest measurement yet of the mass of a neutrino.

By measuring the energy distribution of electrons released during the beta decay of tritium, physicists have determined that the upper limit for the mass of the electron antineutrino is just 0.8 electronvolts. That’s 1.6 × 10–36 kilograms in metric mass, and very, very freaking small in imperial.

Although we still don’t have a precise measurement, narrowing it down brings us closer to understanding these strange particles, the role they play in the Universe, and the impact they could have on our current theories of physics. The achievement was made at the Karlsruhe Tritium Neutrino Experiment (KATRIN) in Germany.

Feb 15, 2022

New Advanced Light Tractor Beam Moving Atoms

Posted by in categories: particle physics, tractor beam

Researchers manage to build a light beam able to attract and repel particles about 100 times further than has been previously achieved.

Feb 14, 2022

The Morning After: European fusion reactor shatters energy production record

Posted by in categories: nuclear energy, particle physics

The Joint European Torus (JET) fusion reactor in the UK has generated the highest level of sustained energy ever from atom fusion. On December 21st, 2021, the “tokamak” reactor produced 59 megajoules of energy during a five-second fusion pulse. That’s double what it created back in 1997. (Yes, I know energy is not created or destroyed, but you get what I mean!)

The JET reactor is the flagship experimental device of the European Fusion Program, funded by the EU. It’s mainly designed to prove scientists’ modeling efforts, with an eye on future, bigger experiments with a much larger ITER reactor in France, set to start fusion testing in 2025.

JET hit a Q value of 0.33, meaning it produced about a third of the energy put in. The highest Q value achieved so far is 0.7 by the US Department of Energy’s National Ignition Facility, but it only hit that figure for 4 billionths of a second. The goal with ITER is to reach a Q factor of 10 or greater. Fun fact: ITER isn’t an acronym but means “the path” in Latin. And now you know.

Feb 13, 2022

It’s time to rethink Nuclear Power! Limitless Green Thorium Energy is coming

Posted by in categories: nuclear energy, particle physics

Nuclear power may not be as bad as you think. If we used Thorium instead of Uranium, we could greatly decrease dangerous radioactive by-products. There is enough Thorium in the world to meet all our energy needs for over 1,000 years.

In this video I show you how nuclear power plants work, and how Thorium can change the game. I aim to shift your views on nuclear power.

Continue reading “It’s time to rethink Nuclear Power! Limitless Green Thorium Energy is coming” »

Feb 12, 2022

Materials challenges and opportunities for quantum computing hardware

Posted by in categories: computing, information science, particle physics, quantum physics

The potential of quantum computers to solve problems that are intractable for classical computers has driven advances in hardware fabrication. In practice, the main challenge in realizing quantum computers is that general, many-particle quantum states are highly sensitive to noise, which inevitably causes errors in quantum algorithms. Some noise sources are inherent to the current materials platforms. de Leon et al. review some of the materials challenges for five platforms for quantum computers and propose directions for their solution.

Science, this issue p. eabb2823.

Feb 12, 2022

Researchers Have Achieved Sustained Long-Distance Quantum Teleportation

Posted by in categories: computing, particle physics, quantum physics

In a way, entangled particles behave as if they are aware of how the other particle is behaving. Quantum particles, at any point, are in a quantum state of probabilities, where properties like position, momentum, and spin of the particle are not precisely determined until there is some measurement. For entangled particles, the quantum state of each depends on the quantum state of the other; if one particle is measured and changes state, for example, the other particle’s state will change accordingly.

The study aimed to teleport the state of quantum qubits, or “quantum bits,” which are the basic units of quantum computing. According to the study, the researchers set up what is basically a compact network with three nodes: Alice, Charlie, and Bob. In this experiment, Alice sends a qubit to Charlie. Bob has an entangled pair of qubits, and also sends one qubit to Charlie, where it interferes with Alice’s qubit. Charlie projects Alice’s qubit onto an entangled quantum Bell State that transfers the state of Alice’s original qubit to Bob’s remaining qubit.

The breakthrough is notable for a few reasons. Many previous demonstrations of quantum teleportation have proven to be unstable over long distances. For example, in 2016, researchers at the University of Calgary were able to perform quantum teleportation at a distance of six kilometers. This was the world record at the time and was seen as a major achievement.

Feb 10, 2022

There Is A New Particle That Can Spontaneously Become Its Antiparticle

Posted by in categories: particle physics, quantum physics

Matter and anti-matter are always thought of as opposites. If they interact, they turn into pure energy. But there are cases, thanks to the peculiar laws of quantum mechanics, where particles and antiparticles are somewhat coexisting. Now, a new particle can be added to those cases.

Feb 9, 2022

“Boson Clouds” Could Explain Dark Matter

Posted by in categories: cosmology, particle physics, quantum physics

The nature of dark matter continues to perplex astronomers. As the search for dark matter particles continues to turn up nothing, it’s tempting to throw out the dark matter model altogether, but indirect evidence for the stuff continues to be strong. So what is it? One team has an idea, and they’ve published the results of their first search.

The conditions of dark matter mean that it can’t be regular matter. Regular matter (atoms, molecules, and the like) easily absorbs and emits light. Even if dark matter were clouds of molecules so cold they emitted almost no light, they would still be visible by the light they absorb. They would appear like dark nebula commonly seen near the galactic plane. But there aren’t nearly enough of them to account for the effects of dark matter we observe. We’ve also ruled out neutrinos. They don’t interact strongly with light, but neutrinos are a form of “hot” dark matter since neutrinos move at nearly the speed of light. We know that most dark matter must be sluggish, and therefore “cold.” So if dark matter is out there, it must be something else.

In this latest work, the authors argue that dark matter could be made of particles known as scalar bosons. All known matter can be placed in two large categories known as fermions and bosons. Which category a particle is in depends on a quantum property known as spin. Fermions such as electrons and quarks have fractional spin such as 1/2 or 3/2. Bosons such as photons have an integer spin such as 1 or 0. Any particle with a spin of 0 is a scalar boson.