Menu

Blog

Archive for the ‘particle physics’ category: Page 234

Jul 30, 2022

Graphene scientists capture first images of atoms ‘swimming’ in liquid

Posted by in categories: nanotechnology, particle physics

Graphene scientists from The University of Manchester have created a novel “nano-petri dish” using two-dimensional (2D) materials to create a new method of observing how atoms move in liquid.

Publishing in the journal Nature, the team led by researchers based at the National Graphene Institute (NGI) used stacks of 2D materials like graphene to trap liquid in order to further understand how the presence of liquid changes the behavior of the solid.

The team were able to capture images of single atoms “swimming” in liquid for the first time. The findings could have widespread impact on the future development of green technologies such as hydrogen production.

Jul 29, 2022

Why is gravity so weak? The answer may lie in the very nature time

Posted by in category: particle physics

The solution as to why gravity is so weak may come from taking a closer look at the Higgs boson.

Jul 29, 2022

The other end of a black hole — with James Beacham

Posted by in categories: cosmology, particle physics, quantum physics

What would happen if you fell into a black hole? Join James Beacham, particle physicist at the Large Hadron Collider at CERN, as he explores what happens when the fabric of reality – physical or societal – gets twisted beyond recognition.

Watch the Q&A with James here: https://youtu.be/Q37oEB4bNSI
Subscribe for regular science videos: http://bit.ly/RiSubscRibe.

Continue reading “The other end of a black hole — with James Beacham” »

Jul 29, 2022

NOTHING: The Science of Emptiness

Posted by in categories: cosmology, particle physics, science

Why is there something rather than nothing? And what does ‘nothing’ really mean? More than a philosophical musing, understanding nothing may be the key to unlocking deep mysteries of the universe, from dark energy to why particles have mass. Journalist John Hockenberry hosts Nobel laureate Frank Wilczek, esteemed cosmologist John Barrow, and leading physicists Paul Davies and George Ellis as they explore physics, philosophy and the nothing they share.

This program is part of the Big Ideas Series, made possible with support from the John Templeton Foundation.

Continue reading “NOTHING: The Science of Emptiness” »

Jul 29, 2022

Eternal Matter Waves: Physicists Build Atom Laser That Can Stay On Forever

Posted by in categories: particle physics, quantum physics

These days, imagining our everyday life without lasers is difficult. Lasers are used in printers, CD players, measuring devices, pointers, and so on.

What makes lasers so special is that they use coherent waves of light: all the light inside a laser vibrates completely in sync. Meanwhile, quantum mechanics tells us that particles like atoms should also be thought of as waves. As a result, we can build ‘atom.

An atom is the smallest component of an element. It is made up of protons and neutrons within the nucleus, and electrons circling the nucleus.

Jul 29, 2022

Scientists calculate the risk of someone being killed by space junk

Posted by in categories: particle physics, satellites

The chance of someone being killed by space junk falling from the sky may seem ridiculously tiny. After all, nobody has yet died from such an accident, though there have been instances of injury and damage to property. But given that we are launching an increasing number of satellites, rockets, and probes into space, do we need to start taking the risk more seriously?

A new study, published in Nature Astronomy, has estimated the chance of causalities from falling rocket parts over the next ten years.

Every minute of every day, debris rains down on us from space – a hazard we are almost completely unaware of. The microscopic particles from asteroids and comets patter down through the atmosphere to settle unnoticed on the Earth’s surface – adding up to around 40,000 tonnes of dust each year.

Jul 28, 2022

Octonions —“May Harbor Secrets of the Universe”

Posted by in categories: mathematics, particle physics, space

“The final theory of nature must be octonionic,” observed Michael Atiyah, a British mathematician who united mathematics and physics during the 1960s in a way not seen since the days of Isaac Newton.

“Octonions are to physics what the Sirens were to Ulysses,” Pierre Ramond, a particle physicist and string theorist at the University of Florida, said to Natalie Walchover for Quanta.

Many physicists and mathematicians over the decades suspected that the peculiar panoply of forces and particles that comprise reality spring logically from the properties of eight-dimensional numbers called “octonions.” Proof surfaced in 1,898, writes Walchover in Quanta, that the reals, complex numbers, quaternions and octonions are the only kinds of numbers that can be added, subtracted, multiplied and divided.

Jul 27, 2022

‘Neutrino factories’ could hold the solution to the cosmic ray mystery

Posted by in categories: particle physics, space

This is because cosmic rays consist of electrically charged particles, meaning as they journey billions of light-years from their source to Earth, they are repeatedly deflected by the magnetic fields of galaxies, making their sources impossible to spot.

Related: High-Energy ‘Ghost Particle’ Traced to Distant Galaxy in Astronomy Breakthrough

Some of the processes and events that launch cosmic rays also blast out astrophysical neutrinos, and these ‘ghost-like’ particles could be used as ‘messengers’ to solve this puzzle, a team of astrophysicists believes.

Jul 27, 2022

Team scripts breakthrough quantum algorithm

Posted by in categories: computing, information science, particle physics, quantum physics

City College of New York physicist Pouyan Ghaemi and his research team are claiming significant progress in using quantum computers to study and predict how the state of a large number of interacting quantum particles evolves over time. This was done by developing a quantum algorithm that they run on an IBM quantum computer. “To the best of our knowledge, such particular quantum algorithm which can simulate how interacting quantum particles evolve over time has not been implemented before,” said Ghaemi, associate professor in CCNY’s Division of Science.

Entitled “Probing geometric excitations of fractional quantum Hall states on quantum computers,” the study appears in the journal of Physical Review Letters.

“Quantum mechanics is known to be the underlying mechanism governing the properties of elementary particles such as electrons,” said Ghaemi. “But unfortunately there is no easy way to use equations of quantum mechanics when we want to study the properties of large number of electrons that are also exerting force on each other due to their .”

Jul 27, 2022

Dark matter behavior may conflict with our best theory of the universe

Posted by in categories: cosmology, particle physics

New research shows a direct interaction between dark matter particles and those that make up ordinary matter.

A new paper, published in the *Astronomy and Astrophysics* journal, discovered unexpected characteristics for the elusive dark matter that likely goes against our best theory of the universe — the Lambda-Cold Dark Matter model.

What is dark matter?