Menu

Blog

Archive for the ‘particle physics’ category: Page 232

Jul 21, 2022

I did not know that!

Posted by in categories: education, evolution, particle physics

“Since her death in 1979, the woman who discovered what the universe is made of has not so much as received a memorial plaque. Her newspaper obituaries do not mention her greatest discovery. […] Every high school student knows that Isaac Newton discovered gravity, that Charles Darwin discovered evolution, and that Albert Einstein discovered the relativity of time. But when it comes to the composition of our universe, the textbooks simply say that the most abundant atom in the universe is hydrogen. And no one ever wonders how we know.“

Jeremy Knowles, discussing the complete lack of recognition Cecilia Payne gets, even today, for her revolutionary discovery. (via alliterate)

OH WAIT LET ME TELL YOU ABOUT CECILIA PAYNE.

Cecilia Payne’s mother refused to spend money on her college education, so she won a scholarship to Cambridge.

Continue reading “I did not know that!” »

Jul 20, 2022

A new Record for the Strongest Magnetic Field Seen in the Universe: 1.6 Billion Tesla

Posted by in categories: cosmology, particle physics

A team of astronomers using the Chinese Insight-HXMT x-ray telescope have made a direct measurement of the strongest magnetic field in the known universe. The magnetic field belongs to a magnetar currently in the process of cannibalizing an orbiting companion.

Magnetars are nasty, but thankfully rare. They are a special kind of neutron star that power up the strongest known magnetic fields.

Continue reading “A new Record for the Strongest Magnetic Field Seen in the Universe: 1.6 Billion Tesla” »

Jul 20, 2022

Researchers Set New Quantum Entanglement Distance Record

Posted by in categories: particle physics, quantum physics

Scientists have been grappling with the strangeness of quantum entanglement for decades, and it’s almost as mysterious in 2022 as it was when Einstein famously dubbed the phenomenon “spooky action at a distance” in 1947. An experiment in Germany that set a new entanglement distance record — with atoms rather than photons — could help shed some light on this quirk of the universe.

Entanglement was initially proposed in the early 20th century as a consequence of quantum mechanics, but many scientists of the day, even Einstein himself, considered it to be impossible. However, many of the counterintuitive predictions of quantum mechanics have been verified over the years, including entanglement. As we’ve seen in numerous experiments, it is possible for particles to be “entangled” such that properties like position, momentum, spin, and polarization can be shared between them. A change in one is immediately reflected in its twin.

Scientists believe entanglement could form the basis for future communication systems that are faster and more secure than what we use today — if you measure the state of one entangled partner, you automatically know the state of the other, and this could be used to transmit data. You just need to separate the entangled pair to make it useful, and researchers from Ludwig-Maximilians-University Munich (LMU) and Saarland University have pushed that range much farther in the new experiment.

Jul 20, 2022

What if Electrons had Feelings

Posted by in categories: particle physics, quantum physics

Implications of the existence of a ‘conscious’ quantum particle.


I know this story is going to be weird in many ways but this is something worth thinking about. Theoretical physicist Richard Feynman once stated.

“Imagine how much harder physics would be if electrons had feelings.”

Continue reading “What if Electrons had Feelings” »

Jul 20, 2022

LHCb ramps up the search for dark photons

Posted by in categories: cosmology, particle physics

The LHCb detector was originally designed to study a particle known as the beauty quark. But now researchers are also using the experiment to search for dark matter:


Researching subatomic particles is an involved process. It can take hundreds—if not thousands—of scientists and engineers to build an experiment, keep it up and running, and analyze the enormous amounts of data it collects. That means physicists are always on the lookout for ways to do more for free: to squeeze out as much physics as possible with the machinery that already exists. And that’s exactly what a handful of physicists have set out to do with the LHCb experiment at CERN.

The LHCb detector was originally designed to study a particle known as the beauty quark. “But as time has gone on, people have seen just how much more we can do with the detector,” says Daniel Johnson, an LHCb collaborator based at MIT.

Continue reading “LHCb ramps up the search for dark photons” »

Jul 19, 2022

Scientists hack fly brains to make them remote controlled

Posted by in categories: cybercrime/malcode, engineering, genetics, nanotechnology, neuroscience, particle physics

Researchers at Rice University have shown how they can hack the brains of fruit flies to make them remote controlled. The flies performed a specific action within a second of a command being sent to certain neurons in their brain.

The team started by genetically engineering the flies so that they expressed a certain heat-sensitive ion channel in some of their neurons. When this channel sensed heat, it would activate the neuron – in this case, that neuron caused the fly to spread its wings, which is a gesture they often use during mating.

Continue reading “Scientists hack fly brains to make them remote controlled” »

Jul 19, 2022

Researcher uses graphene for same-time, same-position biomolecule isolation and sensing

Posted by in categories: materials, particle physics

New research led by University of Massachusetts Amherst assistant professor Jinglei Ping has overcome a major challenge to isolating and detecting molecules at the same time and at the same location in a microdevice. The work, recently published in ACS Nano, demonstrates an important advance in using graphene for electrokinetic biosample processing and analysis, and could allow lab-on-a-chip devices to become smaller and achieve results faster.

The process of detecting biomolecules has been complicated and time-consuming. “We usually first have to isolate them in a complex medium in a device and then send them to another device or another spot in the same device for detection,” says Ping, who is in the College of Engineering’s Mechanical and Industrial Engineering Department and is also affiliated with the university’s Institute of Applied Life Sciences. “Now we can isolate them and detect them at the same microscale spot in a microfluidic device at the same time—no one has ever demonstrated this before.”

His lab achieved this advance by using graphene, a one-atom-thick honeycomb lattice of carbon atoms, as microelectrodes in a .

Jul 19, 2022

A quantum wave in two crystals

Posted by in categories: particle physics, quantum physics

Particles can move as waves along different paths at the same time—this is one of the most important findings of quantum physics. A particularly impressive example is the neutron interferometer: neutrons are fired at a crystal, the neutron wave is split into two portions, which are then superimposed on each other again. A characteristic interference pattern can be observed, which proves the wave properties of matter.

Such neutron interferometers have played an important role for precision measurements and research for decades. However, their size has been limited so far because they worked only if carved from a single piece of crystal. Since the 1990s, attempts have also been made to produce interferometers from two separate crystals—but without success. Now a team from TU Wien, INRIM Turin and ILL Grenoble has achieved precisely this feat, using a high-precision tip-tilt platform for the crystal alignment. This opens up completely new possibilities for quantum measurements, including research on quantum effects in a gravitational field.

Jul 18, 2022

Ionization of Gravitational Atoms

Posted by in categories: cosmology, particle physics

By: William Brown, Biophysicist at the Resonance Science Foundation

Stellar mass black holes, like elementary particles, are remarkably simple objects. They have three primary observable properties: mass, spin, and electric charge. The similarities with elementary particles, like the proton, doesn’t stop there, as stellar mass black holes in binary systems can also form bound and unbound states due to interaction of orbital clouds (from boson condensates), uncannily analogous to the behavior and properties of atoms.

Continue reading “Ionization of Gravitational Atoms” »

Jul 18, 2022

Microsoft’s Project AirSim is pushing drone simulation software to new heights

Posted by in categories: business, drones, particle physics, robotics/AI

How do you teach an autonomous drone to fly itself? Practice, practice, practice. Now Microsoft is offering a way to put a drone’s control software through its paces millions of times before the first takeoff.

The cloud-based simulation platform, Project AirSim, is being made available in limited preview starting today, in conjunction with this week’s Farnborough International Airshow in Britain.

Continue reading “Microsoft’s Project AirSim is pushing drone simulation software to new heights” »