Menu

Blog

Archive for the ‘particle physics’ category: Page 21

May 4, 2024

Near-flawless quantum teleportation demonstrated in groundbreaking experiment

Posted by in categories: particle physics, quantum physics

TURKU, Finland — Beam me up, Scotty! In a study that seems straight out of a “Star Trek” episode, an international team of researchers has achieved a remarkable feat in the realm of quantum teleportation. They have successfully conducted near-perfect quantum teleportation despite the presence of noise that typically disrupts the transfer of quantum states.

Quantum teleportation is a process in which the state of a quantum particle, or qubit, is transferred from one location to another without physically sending the particle itself. This transfer requires quantum resources, such as entanglement between an additional pair of qubits.

Imagine you have a secret message written on a piece of paper. You want to send this message to someone far away without anyone else seeing it. In quantum teleportation, instead of physically sending the paper, you would make an exact copy of the message at the other location while the original message gets destroyed. This requires some special resources like entanglement, which is like a mysterious connection between two qubits.

May 4, 2024

Can the known particles and interactions explain consciousness?

Posted by in categories: neuroscience, particle physics

At a fundamental level, only a few particles and forces govern all of reality. How do their combinations create human consciousness?

May 4, 2024

Rare Dust Particle From Ancient Extraterrestrial Meteorite Challenges Astrophysical Models

Posted by in categories: particle physics, space

In a groundbreaking discovery published in the prestigious Astrophysical Journal, scientists have identified a rare dust particle lodged within an ancient extraterrestrial meteorite, shedding new light on the origins of stars beyond our solar system.

Advanced Research Techniques

Led by Dr. Nicole Nevill of the Universities Space Research Association at LPI, during her Ph.D. studies at Curtin University, the research team meticulously analyzed the dust particle, delving into its atomic composition with unparalleled precision using atom probe tomography.

May 4, 2024

Unlocking the Secrets of the Electron Universe: Scientists Discover Path Beyond Ohm’s Law

Posted by in categories: particle physics, quantum physics

Researchers at Tohoku University and the Japan Atomic Energy Agency have developed fundamental experiments and theories to manipulate the geometry of the ‘electron universe,’ which describes the structure of electronic quantum states in a manner mathematically similar to the actual universe, within a magnetic material under ambient conditions.

The investigated geometric property – i.e., the quantum metric – was detected as an electric signal distinct from ordinary electrical conduction. This breakthrough reveals the fundamental quantum science of electrons and paves the way for designing innovative spintronic devices utilizing the unconventional conduction emerging from the quantum metric.

May 3, 2024

The Big Bang, as Simple as Possible

Posted by in categories: cosmology, evolution, particle physics

The big bang is the model that describes the birth and evolution of the universe. But where did the term come from? What does it actually mean?

Watch this video ad-free on Nebula:
https://nebula.tv/videos/scienceasylu

Continue reading “The Big Bang, as Simple as Possible” »

May 3, 2024

Tweaking isotopes sheds light on promising approach to engineer semiconductors

Posted by in categories: chemistry, engineering, particle physics

Partly because of semiconductors, electronic devices and systems become more advanced and sophisticated every day. That’s why for decades researchers have studied ways to improve semiconductor compounds to influence how they carry electrical current. One approach is to use isotopes to change the physical, chemical and technological properties of materials.

Isotopes are members of a family of an element that all have the same number of protons but different numbers of neutrons and thus different masses. Isotope engineering has traditionally focused on enhancing so-called bulk materials that have uniform properties in three dimensions, or 3D.

But new research led by ORNL has advanced the frontier of isotope engineering where current is confined in two dimensions, or 2D, inside flat crystals and where a layer is only a few atoms thick. The 2D materials are promising because their ultrathin nature could allow for precise control over their .

May 3, 2024

MIT physicists achieve record-breaking proximity of atoms

Posted by in categories: particle physics, quantum physics

The experiment confirmed their suspicions. By supercooling the dysprosium atoms, splitting them into spin-based layers with the lasers, and stabilizing the lasers with the optical fiber, they successfully achieved a 50-nanometer separation – the closest arrangement ever achieved in ultracold atom experiments.

This dramatic proximity significantly amplified the natural magnetic interactions between the atoms, making them a thousand times stronger than at 500 nanometers. The team observed two fascinating quantum phenomena: collective oscillation, where vibrations in one layer triggered synchronized vibrations in the other, and thermalization, where heat transfer occurred between the layers solely through fluctuating magnetic fields within the atoms.

May 3, 2024

QUIONE Unlocks the Quantum Realm With Pioneering Strontium Microscopy

Posted by in categories: computing, particle physics, quantum physics

QUIONE, a unique quantum-gas microscope developed by ICFO researchers in Spain, utilizes strontium to simulate complex quantum systems and explore materials at the atomic level. It aims to solve problems beyond current computational capabilities and has already demonstrated phenomena like superfluidity.

Quantum physics needs high-precision sensing techniques to delve deeper into the microscopic properties of materials. From the analog quantum processors that have emerged recently, the so-called quantum-gas microscopes have proven to be powerful tools for understanding quantum systems at the atomic level. These devices produce images of quantum gases with very high resolution: they allow individual atoms to be detected.

Development of QUIONE.

May 3, 2024

Shedding Light on the Thorium-229 Nuclear Clock Isomer

Posted by in categories: nuclear energy, particle physics, quantum physics

Researchers use a laser to excite and precisely measure a long-sought exotic nuclear state, paving the way for precise timekeeping and ultrasensitive quantum sensing.

Any reliably produced, periodic phenomenon—from the swing of a pendulum to the vibrations of a single atom—can form the basis of a clock. Today’s most precise timekeeping is based on extremely narrow electronic transitions in atoms, which resonate at optical frequencies. These stupendously precise optical atomic clocks lose just 1 second (s) in about 30 billion years. However, they could potentially be outperformed by a nuclear clock, which would instead “tick” to the resonant frequency of a transition that occurs in the atomic nucleus instead of in the electronic shell. The most promising candidate for this nuclear standard is an exceptionally low-energy and long-lived excited state, or isomer, of the isotope thorium-229 (229 Th). Researchers have now achieved the long-sought goal of exciting this transition with ultraviolet light.

May 3, 2024

Twisting and binding matter waves with photons in a cavity

Posted by in categories: cosmology, particle physics, quantum physics

Precisely measuring the energy states of individual atoms has been a historical challenge for physicists due to atomic recoil. When an atom interacts with a photon, the atom “recoils” in the opposite direction, making it difficult to measure the position and momentum of the atom precisely. This recoil can have big implications for quantum sensing, which detects minute changes in parameters, for example, using changes in gravitational waves to determine the shape of the Earth or even detect dark matter.

Page 21 of 542First1819202122232425Last