Toggle light / dark theme

Year 2013 I believe I have seen maybe we are actually in a sorta matrix due to holographic quantum fluid that is throughout reality much like the fabric of the universe but is actually a permeable membrane of reality of quantum fluid. This article details that fluidity of water mimics near all quantum mechanics which would then show then reality may be a holographic quantum fluid as well.


MIT researchers expand the range of quantum behaviors that can be replicated in fluidic systems, offering a new perspective on wave-particle duality.

Stars could be sliced in half by “relativistic blades,” or ultra-powerful outflows of plasma shaped by extremely strong magnetic fields, a wild new study suggests. And these star-splitting blades could explain some of the brightest explosions in the universe.

The study authors, based at the Center for Cosmology and Particle Physics at New York University, outlined their results in a paper published in September to the preprint database arXiv. The study has not yet been peer-reviewed.

Some have described the last several millennia of human dominion over the earth’s resources as the anthropocene, deriving from the Greek “anthropo” meaning human, and “cene” meaning recent. The last century in particular has been dubbed the fourth industrial revolution, due to the pace of technological innovation ushered in by the advent of computers in the middle of the 20th century.

In the past seventy years, computation has transformed every aspect of society, enabling efficient production at an accelerated rate, displacing human labour from chiefly production to services, and exponentially augmenting information storage, generation, and transmission through telecommunications.

How did we get here? Fundamentally, technological advancement draws on existing science. Without an understanding of the nature of electromagnetism and the structure of atoms, we wouldn’t have electricity and the integrated circuitry that power computers. It was only a matter of time, then, before we thought of exploiting the most accurate, fundamental description of physical reality provided by quantum mechanics for computation.

NOAA scientists investigating the stratosphere have found that in addition to meteoric ‘space dust,’ the atmosphere more than seven miles above the surface is peppered with particles containing a variety of metals from satellites and spent rocket boosters vaporized by the intense heat of re-entry.

The discovery is one of the initial findings from analysis of data collected by a high-altitude research plane over the Arctic during a NOAA Chemical Science Laboratory mission called SABRE, short for Stratospheric Aerosol processes, Budget and Radiative Effects. It’s the agency’s most ambitious and intensive effort to date to investigate aerosol particles in the stratosphere, a layer of the atmosphere that moderates Earth’s climate and is home to the protective ozone layer.

Using an extraordinarily sensitive instrument custom-built at NOAA in Boulder, Colorado, and mounted in the nose of a NASA WB-57 research aircraft, scientists found aluminum and exotic metals embedded in about 10 percent of sulfuric acid particles, which comprise the large majority of particles in the stratosphere. They were also able to match the ratio of rare elements they measured to special alloys used in rockets and satellites, confirming their source as metal vaporized from spacecraft reentering Earth’s atmosphere.

A new method of producing an ultra-bright light which breaks traditional laws of particle physics could potentially spark a technological revolution.

The ultra-bright light, a form of ‘coherent light’, is created by particles moving in synchrony rather than independently. This synchrony creates incredibly fast, intense pulses that operate on a scale of atto-seconds – or one thousandth of a millionth of a billionth of a second.

While machines that can currently create ultra-bright light are miles long, scientists have now produced plans for a light source that can fit into a single room. The discovery could create a “mini-societal, technological and scientific revolution”, the researchers behind the development told BBC Science Focus.

Researchers at the Max-Born-Institute have now mapped the linear and nonlinear optical polaron response using ultrafast two-dimensional spectroscopy in the THz frequency range. As they discuss in the current issue of Physical Review Letters, multi-photon ionization of isopropanol molecules by a femtosecond pulse in the near-infrared generates free electrons and the resulting changes of the dielectric properties of the liquid are probed and/or manipulated in the THz frequency range.

An electron and the surrounding cloud of solvent dipoles couple through electric forces and can undergo joint collective motions. Such many-body excitations in the terahertz (THz) are called polarons and have remained nearly unexplored so far. New results from ultrafast THz spectroscopy demonstrate the generation and manipulation of coherent oscillations in a time range of 100 ps and beyond, thus enabling the control of dynamic electric properties of polar liquids.

Ionization of a polar liquid by intense light or particle beams generates , which relax on a picosecond timescale (1 ps = 10-12 s) into a localized ground state. The relaxation process includes the reorientation of the surrounding dipolar solvent molecules and the dissipation of excess energy.

Recent studies have found that Gires-Tournois (GT) biosensors, a type of nanophotonic resonator, can detect minuscule virus particles and produce colorful micrographs (images taken through a microscope) of viral loads. But they suffer from visual artifacts and non-reproducibility, limiting their utilization.

In a recent breakthrough, an international team of researchers, led by Professor Young Min Song from the School of Electrical Engineering and Computer Science at Gwangju Institute of Science and Technology in Korea, has leveraged artificial intelligence (AI) to overcome this problem. Their work was published in Nano Today.

Rapid and on-site diagnostic technologies for identifying and quantifying viruses are essential for planning treatment strategies for infected patients and preventing further spread of the infection. The COVID-19 pandemic has highlighted the need for accurate yet decentralized that do not involve complex and time-consuming processes needed for conventional laboratory-based tests.