Toggle light / dark theme

Experiments with small falling particles show that their orientations oscillate—which may help explain the settling of volcanic ash and the formation of snow.

Ice crystals and volcanic ash fall through the atmosphere in a complicated way that has been hard to capture experimentally. A new lab experiment has photographed the descent of nonspherical plastic particles that were fabricated to resemble natural particles [1]. The images reveal oscillations in the particles’ orientations as they flitter downward. The results could help in modeling the formation of snow and the transparency of clouds, which is important for weather and climate models.

In order to study how micrometer-sized particles fall in the atmosphere, researchers must address the challenge of zooming in on the particles as they pass quickly in front of the camera. “The problem is that your field of view is so small that you have a very limited chance to see the particle for a long trajectory,” says Gholamhossein Bagheri from the Max Planck Institute for Dynamics and Self-Organization in Germany. Previously, researchers tried to solve this problem by performing experiments in water with easier-to-view centimeter-sized particles. The water slows the particle motion, but the ratio of particle size to fluid viscosity—which can be characterized by the dimensionless Reynolds number—remains roughly the same for larger, waterborne particles as for smaller, airborne particles. This correspondence between the two situations implies that water-based experiments can offer information about the speed and orientation of falling particles in the atmosphere.

Scientists have developed “quantum ping-pong”: Using a special lens, two atoms can be made to bounce a single photon back and forth with high precision.

Atoms can absorb and reemit light — this is an everyday phenomenon. In most cases, however, an atom emits a light particle in all possible directions — recapturing this photon is therefore quite hard.

A research team from TU Wien in Vienna (Austria) has now been able to demonstrate theoretically that using a special lens, a single photon emitted by one atom can be guaranteed to be reabsorbed by a second atom. This second atom not only absorbs the photon though, but directly returns it back to the first atom. That way, the atoms pass the photon to each other with pinpoint accuracy again and again – just like in ping-pong.

Researchers at Columbia University have successfully synthesized the first 2D heavy fermion material. They introduce the new material, a layered intermetallic crystal composed of cerium, silicon, and iodine (CeSiI), in a research article published in Nature.

Heavy fermion compounds are a class of materials with electrons that are up to 1,000 times heavier than usual. In these materials, electrons get tangled up with magnetic spins that slow them down and increase their effective mass. Such interactions are thought to play important roles in a number of enigmatic quantum phenomena, including superconductivity, the movement of electrical current with zero resistance.

Researchers have been exploring heavy fermions for decades, but in the form of bulky, 3D crystals. The synthesized by Ph.D. student Victoria Posey in the lab of Columbia chemist Xavier Roy will allow researchers to drop a dimension.

With modern electronic devices approaching the limits of Moore’s law and the ongoing challenge of power dissipation in integrated circuit design, there is a need to explore alternative technologies beyond traditional electronics. Spintronics represents one such approach that could solve these issues and offer the potential for realizing lower-power devices.

A collaboration between research groups led by Professor Barbaros Özyilmaz and Assistant Professor Ahmet Avsar, both affiliated with the Department of Physics and the Department of Materials Science and Engineering at the National University of Singapore (NUS), has achieved a significant breakthrough by discovering the highly anisotropic spin transport nature of two-dimensional black .

The findings have been published in Nature Materials.

We study the competing effects of collective generalized measurements and interaction-induced scrambling in the dynamics of an ensemble of spin-1/2 particles at the level of quantum trajectories. This setup can be considered as analogous to the one leading to measurement-induced transitions in quantum circuits. We show that the interplay between collective unitary dynamics and measurements leads to three regimes of the average Quantum Fisher Information (QFI), which is a witness of multipartite entanglement, as a function of the monitoring strength. While both weak and strong measurements lead to extensive QFI density (i.e., individual quantum trajectories yield states displaying Heisenberg scaling), an intermediate regime of classical-like states emerges for all system sizes where the measurement effectively competes with the scrambling dynamics and precludes the development of quantum correlations, leading to sub-Heisenberg-limited states. We characterize these regimes and the crossovers between them using numerical and analytical tools, and discuss the connections between our findings, entanglement phases in monitored many-body systems, and the quantum-to-classical transition.

While interactions within a many-body quantum system tend to generate highly correlated states, performing local measurements will typically tend to disentangle the different subsystems. When combined, the interplay between these two effects often lead to measurement-induced transitions, which separate two distinct stable phases: one interaction-driven, where entanglement is high, and another measurement-driven, where entanglement is low. However, different types of measurements can lead to other scenarios, and often also generate entanglement themselves. In this work we study quantum many-body systems where both interactions and measurements take place collectively and thus generate a high degree of entanglement if acting separately. We show that nontrivial competition between these two actors emerges, leading to configurations with very low entanglement.

In 1960, Luttinger proposed a universal principle connecting the total capacity of a system for particles with its response to low-energy excitations. Although easily confirmed in systems with independent particles, this theorem remains applicable in correlated quantum systems characterized by intense inter-particle interactions.

However, and quite surprisingly, Luttinger’s theorem has been shown to fail in very specific and exotic instances of strongly correlated phases of matter. The failure of Luttinger’s theorem and its consequences on the behavior of quantum matter are at the core of intense research in condensed matter physics.

Quasicrystals are intermetallic materials that have garnered significant attention from researchers aiming to advance condensed matter physics understanding. Unlike normal crystals, in which atoms are arranged in an ordered repeating pattern, quasicrystals have non-repeating ordered patterns of atoms.

Their unique structure leads to many exotic and interesting properties, which are particularly useful for practical applications in spintronics and magnetic refrigeration.

A unique quasicrystal variant, known as the Tsai-type icosahedral quasicrystal (iQC) and their cubic approximant crystals (ACs), display intriguing characteristics. These include long-range ferromagnetic (FM) and anti-ferromagnetic (AFM) orders, as well as unconventional quantum critical phenomenon, to name a few.

Eighteen months ago, it was shown that different parts of the interior of the proton must be maximally quantum entangled with each other. This result, achieved with the participation of Prof. Krzysztof Kutak from the Institute of Nuclear Physics of the Polish Academy of Sciences (IFJ PAN) in Cracow and Prof. Martin Hentschinski from the Universidad de las Americas Puebla in Mexico, was a consequence of considerations and observations of collisions of high-energy photons with quarks and gluons in protons and supported the hypothesis presented a few years earlier by professors Dimitri Kharzeev and Eugene Levin.

Now, in a paper published in the journal Physical Review Letters, an international team of physicists has been presented a complementary analysis of entanglement for collisions between photons and protons in which secondary particles (hadrons) are produced by a process called diffractive deep inelastic scattering. The main question was: does entanglement also occur among quarks and gluons in these cases, and if so, is it also maximal?

Putting it in simple terms, physicists speak of entanglement between various quantum objects when the values of some feature of these objects are related. Quantum entanglement is not observed in the classical world, but its essence is easily explained by the toss of two coins. Each coin has two sides, and when it falls, it can take one of two mutually exclusive values (heads or tails) with the same probability.