Menu

Blog

Archive for the ‘particle physics’ category: Page 154

May 1, 2023

Encoding Breakthrough Unlocks New Potential in Neutral-Atom Quantum Computing

Posted by in categories: computing, particle physics, quantum physics

Encoding breakthrough allows for solving wider set of applications using neutral-atom quantum computers. QuEra Computing and university researchers have developed a method to expand the optimization calculations possible with neutral-atom quantum computers. This breakthrough, published in PRX Quantum, overcomes hardware limitations, enabling solutions to more complex problems, thus broadening applications in industries like logistics and pharmaceuticals.

Apr 30, 2023

Gravity can transform into light, mind-bending physics paper suggests

Posted by in category: particle physics

To test this idea, the researchers studied the conditions of the extremely early universe. When our cosmos was very young, it was also small, hot and dense. In that youthful cosmos, all forms of matter and energy were ramped up to unimaginable scales, far greater than even our most powerful particle colliders are capable of achieving.

The researchers found that in this setup, gravitational waves — ripples in the fabric of space-time generated by collisions between the most massive cosmic objects — play an important role. Normally, gravitational waves are exceedingly weak, capable of nudging an atom through a distance less than the width of its own nucleus. But in the early universe, the waves could have been much stronger, and that could have seriously influenced everything else.

Those early waves would have sloshed back and forth, amplifying themselves. Anything else in the universe would have gotten caught up in the push and pull of the waves, leading to a resonance effect. Like a kid pumping their legs at just the right time to send a swing higher and higher, the gravitational waves would have acted as a pump, driving matter into tight clumps over and over again.

Apr 30, 2023

How quantum computing could transform everything everywhere, but not all at once

Posted by in categories: computing, particle physics, quantum physics

What does quantum computing have in common with the Oscar-winning movie “Everything Everywhere All at Once”? One is a mind-blowing work of fiction, while the other is an emerging frontier in computer science — but both of them deal with rearrangements of particles in superposition that don’t match our usual view of reality.

Fortunately, theoretical physicist Michio Kaku has provided a guidebook to the real-life frontier, titled “Quantum Supremacy: How the Quantum Computer Revolution Will Change Everything.”

Continue reading “How quantum computing could transform everything everywhere, but not all at once” »

Apr 29, 2023

Dark energy is the product of quantum universe interaction

Posted by in categories: cosmology, engineering, particle physics, quantum physics

Quantum objects make up classical objects. But the two behave very differently. The collapse of the wave-function prevents classical objects from doing the weird things quantum objects do; like quantum entanglement or quantum tunneling. Is the universe as a whole a quantum object or a classical one? Artyom Yurov and Valerian Yurov argue the universe is a quantum object, interacting with other quantum universes, with surprising consequences for our theories about dark matter and dark energy.

1. The Quantum Wonderland

If scientific theories were like human beings, the anthropomorphic quantum mechanics would be a miracle worker, a brilliant wizard of engineering, capable of fabricating almost anything, be it a laser or a complex integrated circuit. At the same token, this wizard of science would probably look and act crazier than a March Hair and Mad Hatter combined. The fact of the matter is, the principles of quantum mechanics are so bizarre and unintuitive, they seem to be utterly incompatible with our inherent common sense. For example, in the quantum realm, a particle does not journey from point A to point B along some predetermined path. Instead, it appears to traverse all possible trajectories between these points – every single one! In this strange realm the items might vanish right in front of an impenetrably high barrier – only to materialize on the other side (this is called quantum tunneling).

Apr 29, 2023

New Study of Einstein Rings Says Dark Matter Behaves More Like a Wave, Not a Particle

Posted by in categories: cosmology, particle physics

Physicists believe most of the matter in the Universe is made up of an invisible substance that we only know about by its indirect effects on the stars and galaxies we can see.

We’re not crazy! Without this “dark matter”, the Universe as we see it would make no sense.

But the nature of dark matter is a longstanding puzzle. However, a new study by Alfred Amruth at the University of Hong Kong and colleagues, published in Nature Astronomy, uses the gravitational bending of light to bring us a step closer to understanding.

Apr 28, 2023

Wolfgang Pauli’s quantum rule makes existence possible

Posted by in categories: particle physics, quantum physics

Quantum uncertainty and wave-particle duality are big features of quantum physics. But without Pauli’s rule, our Universe wouldn’t exist.

Apr 27, 2023

Bringing Interferometric Imaging into the X-Ray Regime

Posted by in categories: particle physics, quantum physics, space

The experimental realization of a recently proposed technique points to new possibilities for imaging molecules using x rays.

Hanbury Brown and Twiss (HBT) interferometry [1] is a versatile technique widely used in various fields of physics, such as astronomy, quantum optics, and particle physics. By measuring the correlation of photon arrival times on two detectors as a function of the photons’ spatial separation, HBT interferometry enables the determination of the size and spatial distribution of a light source. Recently, a novel x-ray imaging technique based on the HBT method was proposed to image the spatial arrangement of heavy elements in a crystal or molecule by inducing those elements to fluoresce at x-ray wavelengths [2].

Apr 27, 2023

Turbulence in Collisionless Cosmic Plasmas

Posted by in categories: computing, cosmology, particle physics

New computer simulations show that wave-particle interactions endow thin plasmas with an effective viscosity that regulates their turbulent motions and heating.

Most of the regular matter in the Universe is plasma, an ebullient state characterized by charged particles interacting collectively with electromagnetic fields. When individual particles collide on scales much shorter than those of bulk plasma motions, the latter are described well by a 3D fluid theory: magnetohydrodynamics. That condition prevails in the interiors of stars and planets and in protoplanetary accretion disks. But many hot, low-density astrophysical plasma flows are only weakly collisional. Accounting for stellar winds, accretion around black holes, and the motions of the plasma that pervades intergalactic space requires a statistical kinetic description of the particle positions and velocities in a 6D space. Numerical simulations by Lev Arzamasskiy of the Institute of Advanced Study in Princeton, New Jersey, and his colleagues [1] shed new light on magnetized kinetic turbulence in such plasmas.

Apr 27, 2023

Engineers ‘grow’ atomically thin transistors on top of computer chips

Posted by in categories: particle physics, robotics/AI

Emerging AI applications, like chatbots that generate natural human language, demand denser, more powerful computer chips. But semiconductor chips are traditionally made with bulk materials, which are boxy 3D structures, so stacking multiple layers of transistors to create denser integrations is very difficult.

However, semiconductor transistors made from ultrathin 2D materials, each only about three atoms in thickness, could be stacked up to create more powerful chips. To this end, MIT researchers have now demonstrated a that can effectively and efficiently “grow” layers of 2D transition metal dichalcogenide (TMD) materials directly on top of a fully fabricated silicon chip to enable denser integrations.

Growing 2D materials directly onto a silicon CMOS wafer has posed a major challenge because the process usually requires temperatures of about 600 degrees Celsius, while silicon transistors and circuits could break down when heated above 400 degrees. Now, the interdisciplinary team of MIT researchers has developed a low-temperature growth process that does not damage the chip. The technology allows 2D semiconductor transistors to be directly integrated on top of standard silicon circuits.

Apr 27, 2023

NIWC Pacific and its partners are building a quantum Navy

Posted by in categories: mathematics, particle physics, quantum physics

For one, classical physics can predict, with simple mathematics, how an object will move and where it will be at any given point in time and space. How objects interact with each other and their environments follow laws we first encounter in high school science textbooks.

What happens in minuscule realms isn’t so easily explained. At the level of atoms and their parts, measuring position and momentum simultaneously yields only probability. Knowing a particle’s exact state is a zero-sum game in which classical notions of determinism don’t apply: the more certain we are about its momentum, the less certain we are about where it will be.

We’re not exactly sure what it will be, either. That particle could be both an electron and a wave of energy, existing in multiple states at once. When we observe it, we force a quantum choice, and the particle collapses from its state of superposition into one of its possible forms.