Toggle light / dark theme

Squeezing Heavy Elements Between Diamonds Might Help Recycle Nuclear Waste

2020 One of the heaviest known elements can be modified more than scientists thought — possibly opening the door to new ways of recycling nuclear fuel and enhanced long-term storage of radioactive elements — according to a recent study published in the journal Nature.


Squeezing heavy elements between diamonds might open doors for recycling nuclear waste.

CDF collaboration at Fermilab announces most precise ever measurement of W boson mass to be in tension with the Standard Model

The discovery changes our understanding of everything. The world of physics may have been turned on its head.


“While this is an intriguing result, the measurement needs to be confirmed by another experiment before it can be interpreted fully,” said Fermilab Deputy Director Joe Lykken.

The W boson is a messenger particle of the weak nuclear force. It is responsible for the nuclear processes that make the sun shine and particles decay. Using high-energy particle collisions produced by the Tevatron collider at Fermilab, the CDF collaboration collected huge amounts of data containing W bosons from 1985 to 2011.

CDF physicist Chris Hays of the University of Oxford said, “The CDF measurement was performed over the course of many years, with the measured value hidden from the analyzers until the procedures were fully scrutinized. When we uncovered the value, it was a surprise.”

Oxford spinoff demonstrates world-first hypersonic “projectile fusion”

Oxford spinoff First Light Fusion says its novel “projectile” approach offers “the fastest, simplest and cheapest route to commercial fusion power.” The company is now celebrating a significant breakthrough with its first confirmed fusion reaction.

The nuclear fusion space is heating up, if you’ll pardon the pun, as the world orients itself toward a clean energy future. Where current nuclear power plants release energy by splitting atoms in fission reactions, fusion reactors will release energy in the same way the Sun does – by smashing atoms together so hard and so fast that they fuse into higher elements.

Most of the big tokamak and stellarator-based fusion projects in progress now intend to create monstrously high temperatures, higher than in the core of the Sun, in magnetically confined plasma, hoping to get those atoms moving fast enough to overcome the powerful repulsion between two nuclei.

JET’s record result and the quest for fusion energy

Physics World Stories podcast, Andrew Glester catches up with two engineers from the UK Atomic Energy Authority to learn more about this latest development. Leah Morgan, a physicist-turned-engineer explains why JET’s recent success is great news for the ITER project – a larger experimental fusion reactor currently under construction in Cadarache, France. Later in the episode, mechanical design engineer Helena Livesey talks about the important role of robotics for accessing equipment within the extreme conditions inside a tokamak device.

HB11 Energy demonstrates nuclear fusion using high-power lasers

Australia’s first fusion energy company HB11 Energy has demonstrated a world-first ‘material’ number of fusion reactions by a private company, producing ten times more fusion reactions than expected based on earlier experiments at the same facility. The technology utilizes high-power, high-precision lasers to start non-thermal fusion reactions between hydrogen and boron-11 rather than heating hydrogen isotopes to hundred-million-degrees temperatures.

This approach was predicted in the 1970s at UNSW by Australian theoretical physicist and HB11 Energy co-founder Professor Heinrich Hora. It differs radically from most other fusion efforts to date that require heating of hydrogen isotopes to millions of degrees.

Nuclear fusion powers the Sun and other stars as hydrogen atoms fuse together to form helium, and the matter is converted into energy. The Sun accomplishes fusion by having a huge amount of hydrogen atoms packed into a plasma that’s superheated to tens of millions of degrees at its core. At these temperatures, the hydrogen atoms move so fast and eventually reach speeds high enough to bring the ions close enough together that they smack into each other and fuse, releasing the energy that warms our planet.

HB11’s hydrogen-boron laser fusion test yields groundbreaking results

HB11 is approaching nuclear fusion from an entirely new angle, using high power, high precision lasers instead of hundred-million-degree temperatures to start the reaction. Its first demo has produced 10 times more fusion reactions than expected, and the company says it’s now “the only commercial entity to achieve fusion so far,” making it “the global frontrunner in the race to commercialize the holy grail of clean energy.”

We’ve covered Australian company HB11’s hydrogen-boron laser fusion innovations before in detail, but it’s worth briefly summarizing what makes this company so different from the rest of the field. In order to smash atoms together hard enough to make them fuse together and form a new element, you need to overcome the incredibly strong repulsive forces that push two positively-charged nuclei apart. It’s like throwing powerful magnets at each other in space, hoping to smash two north poles together instead of having them just dance out of each other’s way.

The Sun accomplishes this by having a huge amount of hydrogen atoms packed into a plasma that’s superheated to tens of millions of degrees at its core. Heat is a measure of kinetic energy – how fast a group of atoms or molecules are moving or vibrating. At these temperatures, the hydrogen atoms are moving so fast that they smack into each other and fuse, releasing the energy that warms our planet.

A Talk Sponsored

It’s a big ask to tell countries with very little access to electricity to accept the same level of responsibility as electricity-rich nations in striving to achieve the net-zero 2050 emissions target set by the United Nations. And nuclear energy has to be in the mix.


Is the IPCC goal of getting to net-zero by 2050 aspirational or legitimate? A Foreign Policy Review panel tackles the question.

Nuclear Energy Company Proposes a New Reactor to Take Care of the Waste Problem

Transmutex is reinventing nuclear energy from first principles using a process that uses radioactive waste as a fuel source.


Transmutex, a Swiss company, states on its website that it is “reinventing nuclear energy from first principles” by using a process that uses radioactive waste as a fuel source.

Its transmitter is a particle accelerator that produces nuclear energy with fewer contaminants than any reactor on the market today. The technology represents a valuable tool in the transition to intermittent renewables by providing baseload energy-producing alternatives to fossil-fuel thermal power stations.

The particle accelerator rather than the radioactive fuel creates a controlled nuclear reaction. Turn off the particle beam and the reaction stops immediately. The technology is designed to use a wide range of nuclear fuels including the radioactive waste from existing reactors.

/* */