Toggle light / dark theme

New research reveals how male and female brains process regret and change decisions

A traditionally overlooked type of RNA plays an important role in promoting resilience to depression—but only in females. According to a new study led by the Icahn School of Medicine at Mount Sinai, researchers have now discovered a novel role this molecule plays in how the female brain makes decisions. The authors revealed brain-region-specific and sex-dependent effects of this biomarker, translated from humans to animals, on how individuals make only certain types of choices. This study uncovered differences in how each sex decides whether to change their minds after making mistakes, including when to cut their losses and move on as well as how they process regrets about missed opportunities.

This research sheds important light on how specific types of decisions that could negatively impact mood engage the male and female brain in very different ways. The study, published July 11 in Science Advances, using laboratory animal models, helps uncover new biological and psychological mechanisms that may be linked to psychiatric vulnerabilities.

Women are twice as likely to develop depression than men. Furthermore, depression can manifest with different symptoms between the sexes, including alterations in negative rumination on the past. However, the neurobiological mechanisms underlying these differences remain unclear.

Role of plasmin in metastatic tumors

FasL is an immune cell membrane protein that triggers a programmed cell death called apoptosis. Activated immune cells, including CAR-T cells made from a patient’s immune system, use apoptosis to kill cancer cells.

The team discovered that in human genes, a single evolutionary amino acid change — serine instead of proline at position 153 — makes FasL more susceptible to being cut and inactivated by plasmin.

Plasmin is a protease enzyme that is often elevated in aggressive solid tumors like triple negative breast cancer, colon cancer and ovarian cancer.

This means that even when human immune cells are activated and ready to attack the tumor cells, one of their key death weapons — FasL — can be neutralized by the tumor environment, reducing the effectiveness of immunotherapies.

The findings may help explain why CAR-T and T-cell-based therapies can be effective in blood cancers but often fall short in solid tumors. Blood cancers often do not rely on plasmin to metastasize, whereas tumors like ovarian cancer rely heavily on plasmin to spread the cancer.

Significantly, the study also showed that blocking plasmin or shielding FasL from cleavage can restore its cancer-killing power. That finding may open new doors for improving cancer immunotherapy.


DunedinPACNI estimates the longitudinal Pace of Aging from a single brain image to track health and disease

Differences in the Pace of Aging are important for many health outcomes but difficult to measure. Here the authors describe the Dunedin Pace of Aging Calculated from NeuroImaging measure, an approach that uses a single brain image to measure how fast a person is aging and can help predict mortality or the risk of developing chronic disease.

Adults with autism show similar brain mapping of body parts as typically developing adults

Autism spectrum disorder (ASD), a neurodevelopmental condition, is often associated with difficulties in social communication and repetitive behavior. Previous research reveals that people with ASD often find it challenging to interpret intentions from body language and have difficulty recognizing faces and emotions, which may contribute to their social communication problems.

Scientists speculate that these challenges might arise from differences in how the brain perceives faces and body parts, i.e., how individuals with ASD represent the human body. However, until now, no study had clearly mapped how body parts are represented in the brains of adults with autism or whether that organization differs from normal or typically developing (TD) adults.

In a detailed neuroimaging study involving adults in Japan, researchers addressed this knowledge gap by examining how ASD represents body parts in the brain. This study was published in the journal Imaging Neuroscience. A team of researchers used imaging (fMRI) to compare in adults with ASD and TD adults as they viewed images of body parts.

Caltech’s New Smart Pill Can Read Your Gut Like Never Before

Researchers are gaining a deeper appreciation for the critical role the gastrointestinal (GI) tract plays in maintaining overall health. Beyond its primary responsibilities in digestion, the GI system contributes to the production of hormones, immune cells, and neurotransmitters that influence brain function and emotional well-being.

Because of this, the GI tract contains a wide array of biomarkers that are valuable for diagnosing, tracking, and managing disease—from short-chain fatty acids associated with metabolic syndrome to cytokines linked to inflammation.

However, current technologies fall short when it comes to capturing this biochemical information directly from the GI tract. Existing methods, such as fecal sampling and tissue biopsies, are often invasive, costly, and unable to deliver continuous or comprehensive real-time data throughout the length of the digestive system.

Abstract: Synaptic plasticity is obstructed by pathogenic tau in the brain

Representing a key mechanism that underlies memory loss in Alzheimer’s disease (AD) and related tauopathies. Here, we found that reduced levels of the memory-associated protein KIdney/BRAin (KIBRA) in the brain and increased KIBRA protein levels in cerebrospinal fluid are associated with cognitive impairment and pathological tau levels in disease. We next defined a mechanism for plasticity repair in vulnerable neurons using the C-terminus of the KIBRA protein (CT-KIBRA). We showed that CT-KIBRA restored plasticity and memory in transgenic mice expressing pathogenic human tau; however, CT-KIBRA did not alter tau levels or prevent tau-induced synapse loss. Instead, we found that CT-KIBRA stabilized the protein kinase Mζ (PKMζ) to maintain synaptic plasticity and memory despite tau-mediated pathogenesis. Thus, our results distinguished KIBRA both as a biomarker of synapse dysfunction and as the foundation for a synapse repair mechanism to reverse cognitive impairment in tauopathy.


1Buck Institute for Research on Aging, Novato, California, USA.

2Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, California, USA.

3Gladstone Institutes, San Francisco, Califoria, USA.

4Weill Institute for Neurosciences, Department of Pathology, University of California San Francisco, San Francisco, California, USA.

CTE and normal aging are difficult to distinguish, new study finds

In recent years, some scientists and advocates have warned that playing contact sports like football and hockey may increase the risk of brain diseases like Alzheimer’s disease or chronic traumatic encephalopathy (CTE) due to a buildup of a specific protein in the brain.

But a new Northwestern Medicine study of 174 donated brains, including some from former high school and , pumps the brakes on that theory.

“The long and short of it is no, this protein in this specific brain region is not increased in people who played football at the amateur level. It throws a little bit of cold water on the current CTE narrative,” said corresponding author Dr. Rudolph Castellani, professor of pathology at Northwestern University Feinberg School of Medicine and a Northwestern Medicine neuropathologist.

Paul Couvert on X: Wow Grok 4 is incredibly good This is the 1st model to generate such a good 3D simulation of the earth

Imagine having a conversation where every gesture and glance feels like a test. You’re juggling eye contact, facial expressions, and tone of voice, all while trying to keep up with the words. You might miss something, or someone might misread you.

In a new study, published in PLOS One, autistic adults describe the intense mental effort it takes to navigate nonverbal communication (NVC).

Researchers reviewed 362 firsthand accounts on the online forum WrongPlanet.net, where autistic adults openly talk about communication challenges. They focused on posts about nonverbal communication—like eye contact, tone of voice, gestures, and facial expressions—and reviewed 26 discussion threads to better understand from autistic adults what it is like to communicate in daily life.

/* */