Toggle light / dark theme

Immortality has been a dream of human beings since the dawn of time. Mankind´s fascination with cheating death is reflected in scientific records, mythology, and folklore dating back at least to ancient Egypt.

Now, Ray Kurzweil, a former Google engineer, claims that humans will achieve immortality by 2030 – and 86 percent of his 147 predictions have been correct.

Kurzweil spoke with the YouTube channel Adagio, discussing the expansion in genetics, nanotechnology, and robotics, which he believes will lead to age-reversing “nanobots.”

An older research article and I really hope I didn’t already post this, but isn’t this scary? Nevermind AI or nano, but the fact you don’t need that to mess with your mind? Oh and I’ve searched google and there’s nanoparticles in meds, including psych meds. EMF could potentially mess with that or the minerals in your body but I’m not an expert. But we do have iron in our blood. I read that EMF can affect the blood brain barrier as well. I know there’s issues with people saying they’re targeted individuals, but with instructions online on how to make a microwave gun, especially on youtube, and there’s a Wired Magazine article about a court case where a judge ordered a man to stop EMF targeting a former business partner over an argument over a business deal. Yup, the 21st centure is bringing more than guns and knives and fists into the foray.


From our archives. This important article first published by GR in August 2004 brings to the forefront the role of Psychotronic weapons as an instrument of modern warfare.

Using nanostructured glass, scientists from the University of Southampton’s Optoelectronics Research Centre (ORC) have developed the recording and retrieval processes of five dimensional (5D) digital data by femtosecond laser writing.

The storage allows unprecedented properties including 360 TB/disc data capacity, thermal stability up to 1,000°C and virtually unlimited lifetime at room temperature (13.8 billion years at 190°C) opening a new era of eternal data archiving. [source].

Whether it’s baking a cake, constructing a building, or creating a quantum device, the caliber of the finished product is greatly influenced by the components or fundamental materials used. In their pursuit to enhance the performance of superconducting qubits, which form the bedrock of quantum computers, scientists have been probing different foundational materials aiming to extend the coherent lifetimes of these qubits.

Coherence time serves as a metric to determine the duration a qubit can preserve quantum data, making it a key performance indicator. A recent revelation by researchers showed that the use of tantalum in superconducting qubits enhances their functionality. However, the underlying reasons remained unknown – until now.

Scientists from the Center for Functional Nanomaterials (CFN), the National Synchrotron Light Source II (NSLS-II), the Co-design Center for Quantum Advantage (C2QA), and Princeton University investigated the fundamental reasons that these qubits perform better by decoding the chemical profile of tantalum.

Year 2016 😗😁


A new “atomic memory” device that encodes data atom by atom can store hundreds of times more data than current hard disks can, a new study finds.

“You would need just the area of a postage stamp to write out all books ever written,” said study senior author Sander Otte, a physicist at the Delft University of Technology’s Kavli Institute of Nanoscience in the Netherlands.

Engineers have been trying to devise increasingly efficient and low-cost methods to fabricate electronic components and devices on a large-scale. Recently, some studies explored the possibilities of creating electronics using solution processing techniques, which involve the deposition of materials with electrical properties from a solution onto a surface.

Researchers at Yonsei University and Sungkyunkwan University in South Korea recently fabricated wafer-scale transistor arrays based on the inorganic compound molybdenum-disulfide using a solution processing method. Their paper, published in Nature Electronics, could contribute to enabling the large-scale and low-cost fabrication of next-generation electronics.

“We have been working on solution-processed 2D nanomaterials for scalable electronic applications for years, yet satisfying both electronic performance and scalability based on solution-based approaches has been very challenging until now,” Joonhoon Kang and Jeong Ho Cho, co-authors of the paper, told Tech Xplore.

Large area metalenses are on the horizon.


In this section, we briefly discuss the presented technique of VSB/CP e-beam writing in comparison with two other contemporary high-resolution lithographic patterning approaches: multibeam e-beam lithography, also known as complementary electron beam lithography (CEBL),16 and optical lithography.

Today’s optical lithography tools are basically well able to address the feature-sizes of the elements presented in the previous section. The exposure in those tools is based on a demagnified imaging of a pattern containing photomask. With this parallel approach, optical lithography is always much faster than any direct-write technique. The central question for making a choice between optical lithography or VSB/CP-based e-beam lithography is, therefore, the effort needed to achieve the required optical performance. For the optical lithography, this is related to the quality of the mask. A high-resolution optical pattern may require a very fine approximation of the mask pattern, leading to large writing times in a mask shop and thus to considerable costs. Consequently, the choice between the different techniques must include considerations on the number of elements required and the price for which the final consumer product can be sold. This cannot be generalized.

The rapid development of wearable electronics requires its energy supply part to be flexible, wearable, integratable and sustainable. However, some of the energy supply units cannot meet these requirements at the same time, and there is also a capacity limitation of the energy storage units, and the development of sustainable wearable self-charging power supplies is crucial. Here, we report a wearable sustainable energy harvesting-storage hybrid self-charging power textile. The power textile consists of a coaxial fiber-shaped polylactic acid/reduced graphene oxide/polypyrrole (PLA-rGO-PPy) triboelectric nanogenerator (fiber-TENG) that can harvest low-frequency and irregular energy during human motion as a power generation unit, and a novel coaxial fiber-shaped supercapacitor (fiber-SC) prepared by functionalized loading of a wet-spinning graphene oxide fiber as an energy storage unit. The fiber-TENG is flexible, knittable, wearable and adaptable for integration with various portable electronics. The coaxial fiber-SC has high volumetric energy density and good cycling stability. The fiber-TENG and fiber-SC are flexible yarn structures for wearable continuous human movement energy harvesting and storage as on-body self-charging power systems, with light-weight, ease of preparation, great portability and wide applicability. The integrated power textile can provide an efficient route for sustainable working of wearable electronics.

Water and carbon make a quantum couple: the flow of water on a carbon surface is governed by an unusual phenomenon dubbed quantum friction. A new work published in Nature Nanotechnology experimentally demonstrates this phenomenon—which was predicted in a previous theoretical study—at the interface between liquid water and graphene, a single layer of carbon atoms. Advanced ultrafast techniques were used to perform this study. These results could lead to applications in water purification and desalination processes and maybe even to liquid-based computers.

For the last 20 years, scientists have been puzzled by how water behaves near carbon surfaces. It may flow much faster than expected from conventional flow theories or form strange arrangements such as square ice. Now, an international team of researchers from the Max Plank Institute for Polymer Research of Mainz (Germany), the Catalan Institute of Nanoscience and Nanotechnology (ICN2, Spain), and the University of Manchester (England), reports in the study published in Nature Nanotechnology on June 22, 2023, that water can interact directly with the carbon’s electrons—a quantum phenomenon that is very unusual in .

A liquid, such as water, is made up of that randomly move and constantly collide with each other. A solid, in contrast, is made of neatly arranged atoms that bathe in a cloud of electrons. The solid and the liquid worlds are assumed to interact only through collisions of the liquid molecules with the solid’s atoms—the liquid molecules do not “see” the solid’s electrons. Nevertheless, just over a year ago, a paradigm-shifting theoretical study proposed that at the water-carbon interface, the liquid’s molecules and the solid’s electrons push and pull on each other, slowing down the liquid flow: this new effect was called quantum friction. However, the theoretical proposal lacked experimental verification.