Toggle light / dark theme

Molecular crystal motors move like microbes when exposed to light

At first glance, Rabih O. Al-Kaysi’s molecular motors look like the microscopic worms you’d see in a drop of pond water. But these wriggling ribbons are not alive; they’re devices made from crystallized molecules that perform coordinated movements when exposed to light. With continued development, Al-Kaysi and colleagues say, their tiny machines could be used by physicians as drug-delivery robots or engineered into arrays that direct the flow of water around submarines.

Unlocking Quantum Secrets: The Revolutionary Dance of Nanoparticles

Innovative research leverages levitated optomechanics to observe quantum phenomena in larger objects, offering potential applications in quantum sensing and bridging the gap between quantum and classical mechanics.

The question of where the boundary between classical and quantum physics lies is one of the longest-standing pursuits of modern scientific research and in new research published today, scientists demonstrate a novel platform that could help us find an answer.

The laws of quantum physics govern the behavior of particles at minuscule scales, leading to phenomena such as quantum entanglement, where the properties of entangled particles become inextricably linked in ways that cannot be explained by classical physics.

Measurement of non-monotonic Casimir forces between silicon nanostructures

Like Brian Greer has said the casimir technologies can power anything and create a free society a free utopia without the need for using any chemicals and it has been known since the 1950s in the physics community.


Previous demonstrations of the elusive Casimir force between interfaces exhibit monotonic dependence on surface displacement. Now a non-monotonic dependence of the force has been shown experimentally by exploting nanostructured surfaces.

Revolutionary Graphene Interfaces Set to Transform Neuroscience

Groundbreaking graphene neurotechnology developed by ICN2 and collaborators promises transformative advances in neuroscience and medical applications, demonstrating high-precision neural interfaces and targeted nerve modulation.

A study published in Nature Nanotechnology presents an innovative graphene-based neurotechnology with the potential for a transformative impact in neuroscience and medical applications. This research, spearheaded by the Catalan Institute of Nanoscience and Nanotechnology (ICN2) together with the Universitat Autònoma de Barcelona (UAB) and other national and international partners, is currently being developed for therapeutic applications through the spin-off INBRAIN Neuroelectronics.

Key Features of Graphene Technology.

‘GPS nanoparticle’ platform precisely delivers therapeutic payload to cancer cells

A newly developed “GPS nanoparticle” injected intravenously can home in on cancer cells to deliver a genetic punch to the protein implicated in tumor growth and spread, according to researchers from Penn State. They tested their approach in human cell lines and in mice to effectively knock down a cancer-causing gene, reporting that the technique may potentially offer a more precise and effective treatment for notoriously hard-to-treat basal-like breast cancers.

Unraveling the origins of life: Scientists discover ‘cool’ sugar acid formation in space

A critical molecule for the metabolism of living organisms has been synthesized for the first time by University of Hawaiʻi at Mānoa researchers at low temperatures (10 K) on ice coated nanoparticles mimicking conditions in deep space, marking a “cool” step in advancing our understanding of the origins of life.