Menu

Blog

Archive for the ‘nanotechnology’ category: Page 66

Aug 25, 2023

Scientists Regrow Retina Cells to Tackle Leading Cause of Blindness Using Nanotechnology

Posted by in categories: biotech/medical, nanotechnology

Regrowing the cells of the human retina on a scaffold of synthetic, tissue-like material showed substantial improvements over previously used materials such as cellulose, and the scientists hope they can move on to testing their method in the already blind.

Macular degeneration is increasing in prevalence in the developed world. It’s the leading cause of blindness and is caused by the loss of cells in a key part of the eye called the retina.

Humans have no ability to regrow retinal pigment cells, but scientists have determined how to do it in vitro using pluripotent stem cells. However as the study authors describe, previous examples of this procedure saw scientists growing the cells on flat surfaces rather than one resembling the retinal membrane.

Aug 25, 2023

Virus ‘nanobots’ can make harmful bacteria in food and drink glow

Posted by in categories: biotech/medical, food, nanotechnology

It can be time consuming to test food and drink for potentially harmful bacteria, but viruses that naturally attack the bacteria can be gene edited to speed up the process.

By Karmela Padavic-Callaghan

Aug 24, 2023

Towards REPO4 nanocrystal-doped optical fibers for distributed sensing applications

Posted by in category: nanotechnology

Rayleigh scattering enhanced nanoparticle-doped optical fibers, for distributed sensing applications, is a new technology that offers unique advantages to optical fiber community. However, the existing fabrication technology, based on in situ grown alkaline earth nanoparticles, is restricted to few compositions and exhibit a great dependence on many experimental conditions. Moreover, there is still several uncertainties about the effect of drawing process on the nanoparticle characteristics and its influence on the scattering enhancement and the induced optical loss. In this work, we shed light on all these issues that prevent the progress in the field and demonstrate the suitability of doping optical fibers with YPO4 nanocrystals for developing tunable Rayleigh scattering enhanced nanoparticle-doped optical fibers.

Aug 24, 2023

Magnetic nano-boost can supercharge antitumor treatment for an alternative cancer therapy

Posted by in categories: biotech/medical, nanotechnology

A new efficient system of cancer treatment using vitamin k3 (Vk3)-loaded copper zinc ferrite nanoparticles having therapeutic capabilities, could benefit millions of cancer patients worldwide.

With the ever-increasing prevalence of cancer cases worldwide, newer approaches to cancer therapy are increasingly needed to tackle the problem. Since conventional cancer therapies such as chemotherapy, radiation therapy and surgery have significant drawbacks such as resistance to chemotherapeutic drugs, adverse effects and lower efficacy, development of nanotherapies that can target hypoxic (when oxygen is not available in sufficient amounts at the tissue level) tumors, with minimum side-effects is necessary.

At present, magnetic hyperthermia-based cancer therapy (MHCT) therapy has been shown to be therapeutic. However, in most cases, it is not as effective due to the generation of lower levels of reactive oxygen species (ROS) in a hypoxic tumor microenvironment (TME) and low heat transmission.

Aug 22, 2023

One-and-Done Influenza A Vaccine?

Posted by in categories: biotech/medical, nanotechnology

The current influenza A vaccines utilize surface proteins as antigens, predominantly hemagglutinin. These antigens change each season, requiring new vaccine formulations and annual administration; thus, development of a universal influenza vaccine is a high priority. In an industry-sponsored phase 2a trial, investigators evaluated a recombinant, nanoparticle-based influenza A vaccine candidate containing influenza nucleoprotein (an invariant protein) and designed to elicit cell-mediated immunity. In all, 137 healthy adults (age range, 18–55) were randomized to receive vaccine (180 µg, 300 µg, or 480 µg) or placebo as a single intramuscular injection.

The vaccine elicited mild-to-moderate local and systemic reactogenicity at all active doses. Cell-mediated responses, as measured by nucleoprotein-specific interferon-gamma ELISpot, showed statistically significant increases compared with baseline in all vaccine groups. In addition to polyfunctional CD4 T-cells and increased antibody levels, the higher doses elicited CD8 T-cell responses. Preliminary evaluation of RT-PCR–positive influenza illness among participants was consistent with vaccine efficacy.

This candidate for a universal influenza A vaccine was safe and showed promise to elicit a strong immune-mediated response. Further studies are needed to evaluate protection against infection and disease compared with the currently available products. However, durability of protection will be the key requirement if a single administration of vaccine is to have a long-lasting effect.

Aug 22, 2023

Research team developing a nano-sized force sensor and improving high-precision microscopy technology

Posted by in categories: biological, nanotechnology

In many cases, cells are very active in their movement and serve as power generators. The ability of cells to produce physical forces is one of the basic functions of the body. When running, for example, the forces generated in the cells cause the muscles to contract and the breath to work. It has been possible to measure even the forces experienced by individual proteins by force sensors developed in the past, but previously intracellular forces and mechanical strains could not have been measured.

Together with the scientists from The Ohio State University OSU, cell biology researchers at Tampere University have developed a force sensor that can be attached to the side of a mechanically responding protein, allowing it to sense forces and strain on the protein within the cell.

The development of the micro-sized sensor began on a conference travel in December 2019.

Aug 21, 2023

Physicists employ synthetic complex frequency waves to overcome optical loss in superlenses

Posted by in categories: biotech/medical, nanotechnology

A collaborative research team led by Interim Head of Physics Professor Shuang Zhang from The University of Hong Kong (HKU), along with National Center for Nanoscience and Technology, Imperial College London and University of California, Berkeley, has proposed a new synthetic complex frequency wave (CFW) approach to address optical loss in superimaging demonstration. The research findings were recently published in the journal Science.

Imaging plays an important role in many fields, including biology, medicine and material science. Optical microscopes use light to obtain imaging of miniscule objects. However, conventional microscopes can only resolve feature sizes in the order of the optical wavelength at best, known as the .

To overcome the diffraction limit, Sir John Pendry from Imperial College London introduced the concept of superlenses, which can be constructed from negative index media or noble metals like silver. Subsequently, Professor Xiang Zhang, the current President and Vice-Chancellor of HKU, along with his then team at the University of California, Berkeley, experimentally demonstrated superimaging using both a silver thin film and a silver/dielectric multilayer stack.

Aug 21, 2023

Stereodivergent synthesis with a programmable molecular machine

Posted by in categories: biotech/medical, chemistry, nanotechnology

This could lead to cures of all diseases and disorders of the human biological systems because one could edit them out 😗😁.


A molecular machine that can be programmed to position a substrate at one of two directing sites on a molecule, which control the stereochemistry of addition to the substrate, demonstrates complexity, precision and function previously only observed in nature.

Aug 21, 2023

Making big leaps in understanding nanoscale gaps

Posted by in categories: chemistry, nanotechnology, physics, solar power, sustainability

Creating novel materials by combining layers with unique, beneficial properties seems like a fairly intuitive process—stack up the materials and stack up the benefits. This isn’t always the case, however. Not every material will allow energy to travel through it the same way, making the benefits of one material come at the cost of another.

Using cutting-edge tools, scientists at the Center for Functional Nanomaterials (CFN), a U.S. Department of Energy (DOE) User Facility at Brookhaven National Laboratory, and the Institute of Experimental Physics at the University of Warsaw have created a new layered structure with 2D materials that exhibits a unique transfer of energy and charge. Understanding its may lead to advancements in technologies such as solar cells and other optoelectronic devices. The results were published in the journal Nano Letters.

Transition metal dichalcogenides (TMDs) are a class of materials structured like sandwiches with . The meat of a TMD is a , which can form with electrons on their outermost orbit or shell, like most elements, as well as the next shell. That metal is sandwiched between two layers of chalcogens, a category of elements that contains oxygen, sulfur, and selenium.

Aug 21, 2023

How “Smart Rust” Nanoparticles Are Revolutionizing Water Cleanup

Posted by in categories: nanotechnology, particle physics, sustainability

Researchers have developed “smart rust,” iron oxide nanoparticles that clean water by attracting pollutants such as oil, nano-and microplastics, glyphosate, and even estrogen hormones.

Pouring flecks of rust into water typically makes it dirtier. However, a groundbreaking development by researchers has led to the creation of “smart rust,” a type of iron oxide nanoparticle that can purify water. This smart rust has the unique ability to attract various pollutants, such as oil, nano-and microplastics, and the herbicide glyphosate, depending on the particles’ coating. What makes it even more efficient is its magnetic nature, which allows easy removal from water using a magnet, taking the pollutants along with it. Recently, the team has optimized these particles to capture estrogen hormones, which can be detrimental to aquatic life.

Presentation and Significance.

Page 66 of 302First6364656667686970Last