Menu

Blog

Archive for the ‘nanotechnology’ category: Page 228

Jul 25, 2018

Tiny robot could be game-changer in fight against tuberculosis

Posted by in categories: biotech/medical, nanotechnology, robotics/AI

Robots like this, nanobots that can work in the body, should be the main focus for curing all disease. And instead of focusing on Drug Delivery, have the nanobots just go in and attack or fix the problem themselves.


A Brock University research team has created a microscopic robot that has the potential to identify drug resistance to tuberculosis faster than conventional tests.

The World Health Organization (WHO) calls drug “a formidable obstacle” to treatment and prevention of a disease that killed 240,000 people in 2016.

Continue reading “Tiny robot could be game-changer in fight against tuberculosis” »

Jul 24, 2018

Beyond silicon: $1.5 billion U.S. program aims to spur new types of computer chips

Posted by in categories: computing, military, nanotechnology, particle physics, policy

Silicon computer chips have been on a roll for half a century, getting ever more powerful. But the pace of innovation is slowing. Today the U.S. military’s Defense Advanced Research Projects Agency (DARPA) announced dozens of new grants totaling $75 million in a program that aims to reinvigorate the chip industry with basic research into new designs and materials, such as carbon nanotubes. Over the next few years, the DARPA program, which supports both academic and industry scientists, will grow to $300 million per year up to a total of $1.5 billion over 5 years.

“It’s a critical time to do this,” says Erica Fuchs, a computer science policy expert at Carnegie Mellon University in Pittsburgh, Pennsylvania.

In 1965, Intel co-founder Gordon Moore made the observation that would become his eponymous “law”: The number of transistors on chips was doubling every 2 years, a time frame later cut to every 18 months. But the gains from miniaturizing the chips are dwindling. Today, chip speeds are stuck in place, and each new generation of chips brings only a 30% improvement in energy efficiency, says Max Shulaker, an electrical engineer at the Massachusetts Institute of Technology in Cambridge. Fabricators are approaching physical limits of silicon, says Gregory Wright, a wireless communications expert at Nokia Bell Labs in Holmdel, New Jersey. Electrons are confined to patches of silicon just 100 atoms wide, he says, forcing complex designs that prevent electrons from leaking out and causing errors. “We’re running out of room,” he says.

Continue reading “Beyond silicon: $1.5 billion U.S. program aims to spur new types of computer chips” »

Jul 22, 2018

Fastest-spinning manmade object clocks 60 billion rpm

Posted by in category: nanotechnology

The fastest-spinning manmade object has been created in a lab at Purdue University. This microscopic rotor is made up of two silica nanoparticles stuck together to form a “dumbbell,” and by hitting it with laser light the team has sent it spinning at a blistering 60 billion rpm.

Read more

Jul 22, 2018

This tiny robot could have big impacts on the future of nanotechnology

Posted by in categories: nanotechnology, robotics/AI

A robot mere molecules long is helping engineers create new nanotechnology one bit at a time.

Read more

Jul 16, 2018

X-rays burst chemo-filled nanobubbles for targeted cancer drug delivery

Posted by in categories: biotech/medical, nanotechnology

Researchers at the Center for Nanoscale BioPhotonics (CNBP) have developed a new targeted treatment for cancer. Chemotherapy drugs are wrapped in “nano-bubbles” called liposomes, which are then injected into the desired part of the body and made to release their payload on demand, by applying X-ray radiation.

Liposomes are regularly used to protect drugs and carry them to where in the body they’re needed. Over the years, we’ve seen them used to protect insulin doses from the harsh environment of the gut long enough for it to enter the bloodstream, disarm bacteria without using antibiotics, and escort cancer-killers to tumors.

“Liposomes are already well established as an extremely effective drug-delivery system,” says Wei Deng, lead author of the study. “Made out of similar material as cell membranes, these ‘bubbles’ are relatively simple to prepare, can be filled with appropriate medications and then injected into specific parts of the body. The issue however, is in controlling the timely release of the drug from the liposome.”

Read more

Jul 13, 2018

Method of making oxygen from water in zero gravity raises hope for long-distance space travel

Posted by in categories: nanotechnology, space travel

In the new study, the researchers dropped the full experimental set up for photocatalysis down a 120m drop tower, creating an environment similar to microgravity. As objects accelerate towards Earth in free fall, the effect of gravity diminishes as forces exerted by gravity are cancelled out by equal and opposite forces due to the acceleration. This is opposite to the G forces experienced by astronauts and fighter pilots as they accelerate in their aircraft.

The researchers managed to show that it is indeed possible to split water in this environment. However, as water is split to create gas, bubbles form. Getting rid of bubbles from the catalyst material once formed is important – bubbles hinder the process of creating gas. On Earth, gravity makes the bubbles automatically float to the surface (the water near the surface is denser than the bubbles, which makes them buyonant) – freeing the space on the catalyst for the next bubble to be produced.

In zero gravity this is not possible and the bubble will remain on or near the catalyst. However, the scientists adjusted the shape of nanoscale features in the catalyst by creating pyramid-shaped zones where the bubble could easily disengage from the tip and float off into the medium.

Continue reading “Method of making oxygen from water in zero gravity raises hope for long-distance space travel” »

Jul 13, 2018

Nanomaterials that mimic nerve impulses (spikes) discovered

Posted by in categories: computing, nanotechnology, neuroscience

Nanomaterials that mimic nerve impulses (credit: Osaka University)

A combination of nanomaterials that can mimic nerve impulses (“spikes”) in the brain have been discovered by researchers at Kyushu Institute of Technology and Osaka University in Japan.

Current “neuromorphic” (brain-like) chips (such as IBM’s neurosynaptic TrueNorth) and circuits (such as those based on the NVIDIA GPGPU, or general purpose graphical processing unit) are devices based on complex circuits that emulate only one part of the brain’s mechanisms: the learning ability of synapses (which connect neurons together).

Continue reading “Nanomaterials that mimic nerve impulses (spikes) discovered” »

Jul 11, 2018

Report on the 11th Annual Concertation and Consultation Workshop on Micro-Nano-Bio-Systems: MNBS 2017

Posted by in categories: biotech/medical, nanotechnology

This report covers the 11th edition of the EU-funded MicroNanoBio Systems cluster annual MNBS Bioelectronics Workshop, which took place in Amsterdam at the Beurs van Berlage on 12th-13th December 2017 and was included as part of the International Micro Nano Conference 2017, of which the main topics were Microfluidics and Analytical Systems, Fabrication and Characterization at the Nanoscale, and Organ-on-a-Chip.

Finger touching electronics board

Read more

Jul 10, 2018

Carbon nanotubes used to develop clothing that can double as batteries

Posted by in categories: engineering, military, nanotechnology

Move over, Iron Man.

What makes this possible are the unique properties of carbon nanotubes: a large surface area that is strong, conductive and heat-resistant.

UC’s College of Engineering and Applied Science has a five-year agreement with the Air Force Research Laboratory to conduct research that can enhance military technology applications.

Continue reading “Carbon nanotubes used to develop clothing that can double as batteries” »

Jul 9, 2018

Non-von Neumann zettaFLOPS supercomputers, yottaFLOPS cryogenic supercomputers and beyond with molecular nanotechnology

Posted by in categories: nanotechnology, supercomputing

Thomas Sterling has retracted his prediction that we will never reach ZettaFLOP computers. He now predicts zettaFLOPS can be achieved in less than 10 years if innovations in non-von Neumann architecture can be scaled. With a change to cryogenic technologies, we can reach yottaFLOPS by 2030.

Read more