Menu

Blog

Archive for the ‘nanotechnology’ category: Page 219

Feb 6, 2019

New research signals big future for quantum radar

Posted by in categories: biotech/medical, nanotechnology, quantum physics

A prototype quantum radar that has the potential to detect objects which are invisible to conventional systems has been developed by an international research team led by a quantum information scientist at the University of York.

The new breed of radar is a hybrid system that uses correlation between microwave and optical beams to detect objects of low reflectivity such as cancer cells or aircraft with a stealth capability. Because the quantum radar operates at much lower energies than conventional systems, it has the long-term potential for a range of applications in biomedicine including non-invasive NMR scans.

The research team led by Dr Stefano Pirandola, of the University’s Department of Computer Science and the York Centre for Quantum Technologies, found that a special converter — a double-cavity device that couples the microwave beam to an optical beam using a nano-mechanical oscillator — was the key to the new system.

Read more

Feb 6, 2019

Brewing nanotechnology from tea

Posted by in categories: biotech/medical, nanotechnology, quantum physics, solar power, sustainability

Quantum dots, which have potential uses in medical imaging and solar cells, could be made with help from the polyphenols found in tea leaves.

Read more

Feb 3, 2019

Mollusk with magnetic teeth could be the key to nanoscale energy sources

Posted by in categories: bioengineering, energy, genetics, nanotechnology

A team of scientists have made a new discovery about naturally occurring magnetic materials, which in turn could lead to the development of nanoscale energy sources used to power next generation electronic devices. Researchers from Japan’s Okayama University and UC Riverside’s Bourns College of Engineering worked together to study the gumboot chiton, a type of mollusk that produces teeth made of the magnetic mineral magnetite, in hopes of better understanding its genetic process.

Read more

Jan 31, 2019

Lamborghini and MIT team up on electric supercar without batteries

Posted by in categories: energy, nanotechnology, transportation

Instead, the body of the Lamborghini Terzo Millennio concept car, made from exotic carbon nanotubes, would be used as a supercapacitor. Supercapacitors store and release energy in a manner different from that employed by batteries. They have certain advantages, but also serious disadvantages.

It could be years, if ever, before scientists from MIT and Lamborghini, which is part of the Volkswagen Group ( VLKAF ), can overcome the downsides. But the effort would be worth it, said Mauricio Reggiani, Lamborghini’s head of research and development.

“At the moment, we are really optimistic,” he said.

Continue reading “Lamborghini and MIT team up on electric supercar without batteries” »

Jan 30, 2019

Engineer’s ‘metallic wood’ has the strength of titanium and the density of water

Posted by in categories: nanotechnology, particle physics, transportation

High-performance golf clubs and airplane wings are made out of titanium, which is as strong as steel but about twice as light. These properties depend on the way a metal’s atoms are stacked, but random defects that arise in the manufacturing process mean that these materials are only a fraction as strong as they could theoretically be. An architect, working on the scale of individual atoms, could design and build new materials that have even better strength-to-weight ratios.

In a new study published in Nature Scientific Reports, researchers at the University of Pennsylvania’s School of Engineering and Applied Science, the University of Illinois at Urbana-Champaign, and the University of Cambridge have done just that. They have built a sheet of nickel with nanoscale pores that make it as strong as titanium but four to five times lighter.

The empty space of the pores, and the self-assembly process in which they’re made, make the porous metal akin to a , such as .

Continue reading “Engineer’s ‘metallic wood’ has the strength of titanium and the density of water” »

Jan 25, 2019

Self-assembling nanomaterial offers pathway to more efficient, affordable harnessing of solar power

Posted by in categories: nanotechnology, solar power, sustainability

Solar rays are a plentiful, clean source of energy that is becoming increasingly important as the world works to shift away from power sources that contribute to global warming. But current methods of harvesting solar charges are expensive and inefficient—with a theoretical efficiency limit of 33 percent. New nanomaterials developed by researchers at the Advanced Science Research Center (ASRC) at The Graduate Center of The City University of New York (CUNY) could provide a pathway to more efficient and potentially affordable harvesting of solar energy.

Read more

Jan 25, 2019

Nanotechnology enables engineers to weld previously un-weldable aluminum alloy

Posted by in categories: nanotechnology, transportation

An aluminum alloy developed in the 1940s has long held promise for use in automobile manufacturing, except for one key obstacle. Although it’s nearly as strong as steel and just one-third the weight, it is almost impossible to weld together using the technique commonly used to assemble body panels or engine parts.

Read more

Jan 23, 2019

Ingestible Nanobots To Start Delivering Drugs Into Blood Vessels

Posted by in categories: biotech/medical, nanotechnology

A newly designed set of nanorobots could be the key to implementing a new global structure of administering medication using nanobots.

Profile Image

Read more

Jan 23, 2019

Aether and UCL Researchers Democratizing 3D Printed Nanotech at 2% of Competitor Cost

Posted by in categories: 3D printing, nanotechnology

Aether collaborating with University College London and Loughborough University to develop 3D printing nanotechnology at a revolutionary low cost.

Erin Abbott [email protected]

Read more

Jan 22, 2019

Can nanotechnology rewire an injured spinal cord?

Posted by in categories: biotech/medical, computing, economics, education, health, nanotechnology, neuroscience

According to the World Health Organisation, up to a half-million people around the world suffer a spinal cord injury each year. Often caused by road traffic crashes, accidents or violence, the loss of motor control or paralysis significantly impacts quality of life and requires years of treatment and care. Spinal cord injury is also associated with lower rates of school enrollment and economic participation, and carries substantial individual and societal costs.

Current methods for spinal cord injury treatment involve cumbersome brain-machine interfaces, with many cables linking the patient and a computer to restore limited motor functions. Other methods to map , such as magnetoencephalography, require very large machinery and particularly low-temperature working conditions.

Continue reading “Can nanotechnology rewire an injured spinal cord?” »