Menu

Blog

Archive for the ‘nanotechnology’ category: Page 202

Oct 9, 2019

Nanoscale manipulation of light leads to exciting new advancement

Posted by in categories: materials, nanotechnology

Controlling the interactions between light and matter has been a long-standing ambition for scientists seeking to develop and advance numerous technologies that are fundamental to society. With the boom of nanotechnology in recent years, the nanoscale manipulation of light has become both, a promising pathway to continue this advancement, as well as a unique challenge due to new behaviors that appear when the dimensions of structures become comparable to the wavelength of light.

Scientists in the Theoretical Nanophotonics Group at The University of New Mexico’s Department of Physics and Astronomy have made an exciting new advancement to this end, in a pioneering research effort titled “Analysis of the Limits of the Near-Field Produced by Nanoparticle Arrays,” published recently in the journal, ACS Nano, a top journal in the field of nanotechnology. The group, led by Assistant Professor Alejandro Manjavacas, studied how the optical response of periodic arrays of metallic nanostructures can be manipulated to produce in their vicinity.

The arrays they studied are composed of silver nanoparticles, tiny spheres of silver that are hundreds of times smaller than the thickness of a human hair, placed in a repeating pattern, though their results apply to nanostructures made of other materials as well. Because of the between each of the nanospheres, these systems can be used for different applications, ranging from vivid, high-resolution color printing to biosensing that could revolutionize healthcare.

Oct 4, 2019

3D printing technique accelerates nanoscale fabrication 1000-fold

Posted by in categories: 3D printing, engineering, nanotechnology

Using a new time-based method to control light from an ultrafast laser, researchers have developed a nanoscale 3D printing technique that can fabricate tiny structures 1000 times faster than conventional two-photon lithography (TPL) techniques, without sacrificing resolution.

Despite the high throughput, the new parallelized technique—known as femtosecond projection TPL (FP-TPL)—produces depth resolution of 175 nanometers, which is better than established methods and can fabricate structures with 90-degree overhangs that can’t currently be made. The technique could lead to manufacturing-scale production of bioscaffolds, flexible electronics, electrochemical interfaces, micro-optics, mechanical and optical metamaterials, and other functional micro- and nanostructures.

The work, reported Oct. 3 in the journal Science, was done by researchers from Lawrence Livermore National Laboratory (LLNL) and The Chinese University of Hong Kong. Sourabh Saha, the paper’s lead and corresponding author, is now an assistant professor in the George W. Woodruff School of Mechanical Engineering at the Georgia Institute of Technology.

Oct 3, 2019

A filament fit for space—silk is proven to thrive in outer space temperatures

Posted by in categories: nanotechnology, space

Their initial discovery had seemed like a contradiction because most other polymer fibres embrittle in the cold. But after many years of working on the problem, the group of researchers have discovered that silk’s cryogenic toughness is based on its nano-scale fibrills. Sub-microscopic order and hierarchy allows a silk to withstand temperatures of down to −200 C. And possibly even lower, which would make these classic natural luxury fibres ideal for applications in the depths of chilly outer-space.

The interdisciplinary team examined the behaviour and function of several animal silks cooled down to liquid nitrogen temperature of −196 C. The fibres included spider silks but the study focused on the thicker and much more commercial fibres of the wild silkworm Antheraea pernyi.

In an article published today in Materials Chemistry Frontiers, the team was able to show not only ‘that’ but also ‘how’ silk increases its toughness under conditions where most materials would become very brittle. Indeed, silk seems to contradict the fundamental understanding of polymer science by not losing but gaining quality under really cold conditions by becoming both stronger and more stretchable. This study examines the ‘how’ and explains the ‘why’. It turns out that the underlying processes rely on the many nano-sized fibrils that make up the core of a silk fibre.

Oct 2, 2019

DNA Nanomachines Are Opening Medicine to the World of Physics

Posted by in categories: biotech/medical, chemistry, nanotechnology, robotics/AI

When I imagine the inner workings of a robot, I think hard, cold mechanics running on physics: shafts, wheels, gears. Human bodies, in contrast, are more of a contained molecular soup operating on the principles of biochemistry.

Yet similar to robots, our cells are also attuned to mechanical forces—just at a much smaller scale. Tiny pushes and pulls, for example, can urge stem cells to continue dividing, or nudge them into maturity to replace broken tissues. Chemistry isn’t king when it comes to governing our bodies; physical forces are similarly powerful. The problem is how to tap into them.

In a new perspectives article in Science, Dr. Khalid Salaita and graduate student Aaron Blanchard from Emory University in Atlanta point to DNA as the solution. The team painted a futuristic picture of DNA mechanotechnology, in which we use DNA machines to control our biology. Rather than a toxic chemotherapy drip, for example, a cancer patient may one day be injected with DNA nanodevices that help their immune cells better grab onto—and snuff out—cancerous ones.

Sep 30, 2019

SwarmTouch: A tactile interaction strategy for human-swarm communication

Posted by in categories: drones, nanotechnology, robotics/AI, space

Researchers at the Skolkovo Institute of Science and Technology (Skoltech) in Russia have recently introduced a new strategy to enhance interactions between humans and robotic swarms, called SwarmTouch. This strategy, presented in a paper pre-published on arXiv, allows a human operator to communicate with a swarm of nano-quadrotor drones and guide their formation, while receiving tactile feedback in the form of vibrations.

“We are working in the field of swarm of drones and my previous research in the field of haptics was very helpful in introducing a new frontier of tactile human-swarm interactions,” Dzmitry Tsetserukou, Professor at Skoltech and head of Intelligent Space Robotics laboratory, told TechXplore. “During our experiments with the swarm, however, we understood that current interfaces are too unfriendly and difficult to operate.”

Continue reading “SwarmTouch: A tactile interaction strategy for human-swarm communication” »

Sep 24, 2019

Nanomaterials for (Nano)medicine via ACS Medicinal Chemistry Letters

Posted by in categories: biotech/medical, chemistry, nanotechnology

Next generation nanomedicine will rely on innovative nanomaterials capable of unprecedented performance. Which ones are the most promising candidates for a medicinal chemist?

Find out more: http://acspubs.co/XxlB50woh6w

Sep 24, 2019

A new way to turn heat into energy

Posted by in categories: energy, engineering, nanotechnology, space

An international team of scientists has figured out how to capture heat and turn it into electricity.

The discovery, published last week in the journal Science Advances, could create more efficient generation from heat in things like car exhaust, interplanetary space probes and .

“Because of this discovery, we should be able to make more out of heat than we do today,” said study co-author Joseph Heremans, professor of mechanical and aerospace engineering and Ohio Eminent Scholar in Nanotechnology at The Ohio State University. “It’s something that, until now, nobody thought was possible.”

Sep 24, 2019

The New BMW X6 Has Light-Absorbing ‘Vantablack’ Paint

Posted by in categories: nanotechnology, transportation

A paint so impractical (and cool) — think matte black squared — you know some idiot will have to try it on a street car, even though it doesn’t like being left outside, or washed. This nanotube coating reflects just 0.036 percent of light.

Sep 22, 2019

Novel anti-cancer nanomedicine for efficient chemotherapy

Posted by in categories: biotech/medical, nanotechnology

Researchers at the University of Helsinki in collaboration with researchers from Åbo Akademi University (Finland) and Huazhong University of Science and Technology (China) have developed a new anti-cancer nanomedicine for targeted cancer chemotherapy. This new nano-tool provides a new approach to use cell-based nanomedicines for efficient cancer chemotherapy.

Sep 22, 2019

Honey I shrunk the kids! Real life ‘shrink ray’ reduces 3D structures to 1/1000th their original size

Posted by in categories: nanotechnology, robotics/AI

SCIENTISTS have created a “shrink ray” that can reduce objects to one-thousandth of their original size.

The mind-blowing gizmo could one day be used to create nano-robots that are smaller that we can physically produce today.

This brings us a step closer to making 1989 sci-fi comedy Honey, I Shrunk the Kids a reality.