Menu

Blog

Archive for the ‘nanotechnology’ category: Page 196

Dec 19, 2019

Engineers develop a less invasive way to study the brain

Posted by in categories: genetics, nanotechnology, neuroscience

Optogenetics, a tool for controlling neurons with light, has given neuroscientists the ability to flip brain cells on and off more or less at will, revolutionizing neuroscience.

Yet the technique faces a fundamental challenge: To study all but the outermost part of the brain, researchers need to implant fiber optics or other invasive devices to deliver deep into the brain.

Now, in Proceedings of the National Academy of Sciences, Stanford researchers report that they’ve found a less invasive way to do so: injectable nanoparticles that convert , which can easily penetrate into the brain, into light.

Dec 17, 2019

Researchers observe brain-like behavior in nanoscale device

Posted by in categories: nanotechnology, neuroscience

UCLA scientists James Gimzewski and Adam Stieg are part of an international research team that has taken a significant stride toward the goal of creating thinking machines.

Led by researchers at Japan’s National Institute for Materials Science, the team created an that exhibited characteristics analogous to certain behaviors of the —learning, memorization, forgetting, wakefulness and sleep. The paper, published in Scientific Reports, describes a network in a state of continuous flux.

“This is a system between order and chaos, on the edge of chaos,” said Gimzewski, a UCLA distinguished professor of chemistry and biochemistry, a member of the California NanoSystems Institute at UCLA and a co-author of the study. “The way that the constantly evolves and shifts mimics the . It can come up with different types of behavior patterns that don’t repeat themselves.”

Dec 17, 2019

A new gene therapy strategy, courtesy of Mother Nature

Posted by in categories: biotech/medical, genetics, nanotechnology, neuroscience

Scientists have developed a new gene-therapy technique by transforming human cells into mass producers of tiny nano-sized particles full of genetic material that has the potential to reverse disease processes.

Though the research was intended as a proof of concept, the experimental therapy slowed and prolonged survival in mice with gliomas, which constitute about 80 percent of in humans.

The technique takes advantage of exosomes, fluid-filled sacs that release as a way to communicate with other cells.

Dec 13, 2019

Scientists explain why some molecules spontaneously arrange themselves into five slices of nanoscale pie

Posted by in categories: biotech/medical, nanotechnology

Materials formed on vanishingly small scales are being used in medicine, electronics, manufacturing and a host of other applications. But scientists have only scratched the surface of understanding how to control building blocks on the nanoscale, where simple machines the size of a virus operate.

Now, a team of researchers led by Dongsheng Li, a materials scientist at PNNL, and collaborators at the University of Michigan and the Chinese Academy of Sciences, have unlocked the secret to one of the most useful nanostructures: the five-fold twin. Their study describing why and how this shape forms is detailed in the journal Science and was presented at the Materials Research Society annual meeting on December 5, 2019.

Continue reading “Scientists explain why some molecules spontaneously arrange themselves into five slices of nanoscale pie” »

Dec 13, 2019

Nanoscience breakthrough: Probing particles smaller than a billionth of a meter

Posted by in categories: bioengineering, biotech/medical, chemistry, nanotechnology

Scientists at Tokyo Institute of Technology (Tokyo Tech) have developed a new methodology that allows researchers to assess the chemical composition and structure of metallic particles with a diameter of only 0.5 to 2 nm. This breakthrough in analytical techniques will enable the development and application of minuscule materials in the fields of electronics, biomedicine, chemistry, and more.

The study and development of novel materials have enabled countless technological breakthroughs and are essential across most fields of science, from medicine and bioengineering to cutting-edge electronics. The rational design and analysis of innovative materials at nanoscopic scales allows us to push through the limits of previous devices and methodologies to reach unprecedented levels of efficiency and new capabilities. Such is the case for metal nanoparticles, which are currently in the spotlight of modern research because of their myriad potential applications. A recently developed synthesis method using dendrimer molecules as a template allows researchers to create metallic nanocrystals with diameters of 0.5 to 2 nm (billionths of a meter).

Dec 12, 2019

Space Heater: Scientists Find New Way to Transfer Energy Through a Vacuum

Posted by in categories: energy, nanotechnology, quantum physics, space

Nanoscale experiments reveal that quantum effects can transmit heat between objects separated by empty space.

Dec 11, 2019

Cheers! Maxwell’s electromagnetism extended to smaller scales

Posted by in categories: information science, nanotechnology

On Dec. 11, 2019, a general framework for incorporating and correcting for nonclassical electromagnetic phenomena in nanoscale systems will be presented in the journal Nature.

More than 150 years have passed since the publication of James Clerk Maxwell’s “A Dynamical Theory of the Electromagnetic Field” (1865). His treatise revolutionized the fundamental understanding of electric fields, magnetic fields and light. The 20 original equations (elegantly reduced to four today), their boundary conditions at interfaces, and the bulk electronic response functions (dielectric permitivity and magnetic permeability) are at the root of the ability to manipulate electromagnetic fields and light.

Life without Maxwell’s equations would lack most current science, communications and technology.

Dec 11, 2019

Nanotech Suggests To Have Found A Way To Combat Age Related Diseases

Posted by in categories: biotech/medical, life extension, nanotechnology

NaNotics, in another breakthrough, is promising a new kind of medication, and suggests to have found a way to combat age related diseases; boldly going where no nanotech has gone before.

Lou Hawthorne of NaNotics, LLC opened his presentation at a recent longevity investor event using a clip from Star Trek that shows captain Kirk being giving a shot that restores him to his younger years.

“It’s tempting to assume it’s a drug, but what if the content of that syringe was something new?” NaNotics’ CEO Hawthorne asked. “NaNots are a new class of medicine. They are engineered to do just one thing and that’s the holy grail of medicine design, because most drugs do two things: something you want them to do, and something you don’t. In other words, side effects.”

Dec 9, 2019

Transhumanism and Immortality

Posted by in categories: 3D printing, bioengineering, biotech/medical, cryonics, cyborgs, genetics, life extension, nanotechnology, robotics/AI, transhumanism

I am in shock… Google suddenly as yahoo are allowing conjecture and mendacity be seen as public or scientific opinion. Here is another confused mind who towards the end of her rant quotes Christian scripture as basis to stop Life extension-Transhumanism???

When I say to these minds Behold the leader of Christianity stood for Life abundant-Super Longevity and I can prove such. No matter what lost evangelist or preacher tells you Jesus was a medical researcher of extraordinary magnitude…

NOW BEHOLD THE LOST in this article… https://www.rodofironministries.com/…/transhumanism-and-imm… Respect r.p.berry & AEWR wherein aging now ends we have found the many causes of aging and we have located an expensive cure. We search for partners-investors to now join us in agings end… gerevivify.blogspot.com/

Continue reading “Transhumanism and Immortality” »

Dec 2, 2019

Solving the thermoelectric ‘trade-off’ conundrum with metallic carbon nanotubes

Posted by in categories: energy, nanotechnology, transportation, wearables

Scientists from Tokyo Metropolitan University have used aligned “metallic” carbon nanotubes to create a device which converts heat to electrical energy (a thermoelectric device) with a higher power output than pure semiconducting carbon nanotubes (CNTs) in random networks. The new device bypasses the troublesome trade-off in semiconductors between conductivity and electrical voltage, significantly outperforming its counterpart. High power thermoelectric devices may pave the way for more efficient use of waste heat, like wearable electronics.

Thermoelectric devices can directly convert heat to electricity. When we think about the amount of wasted heat in our environment like in air conditioning exhausts, vehicle engines or even body heat, it would be revolutionary if we could somehow scavenge this energy back from our surroundings and put it to good use. This goes some way to powering the thought behind wearable electronics and photonics, devices which could be worn on the skin and powered by body heat. Limited applications are already available in the form of body heat powered lights and smartwatches.

The power extracted from a thermoelectric device when a is formed is affected by the conductivity of the device and the Seebeck coefficient, a number indicating how much electrical voltage is generated with a certain difference in temperature. The problem is that there is a trade-off between the Seebeck coefficient and conductivity: the Seebeck coefficient drops when the device is made more conductive. To generate more power, we ideally want to improve both.