Menu

Blog

Archive for the ‘nanotechnology’ category: Page 180

Jun 4, 2020

Joined nano-triangles pave the way to magnetic carbon materials

Posted by in categories: chemistry, nanotechnology, particle physics

Graphene, a two-dimensional honeycomb structure made of carbon atoms with a thickness of only one atom, has numerous outstanding properties. These include enormous mechanical resistance and extraordinary electronic and optical properties. Last year a team led by the Empa researcher Roman Fasel was able to show that it can even be magnetic: they succeeded in synthesizing a molecule in the shape of a bowtie, which has special magnetic properties.

Now, researchers report another breakthrough. Theoretical work from 2007 predicted that graphene could exhibit if it were cut into tiny triangles. Over the last three years, several teams, including the Empa team, have succeeded in producing the so-called triangulenes, consisting of only a few dozen , by chemical synthesis under ultra-high vacuum.

Jun 4, 2020

Graphene and 2-D materials could move electronics beyond ‘Moore’s law’

Posted by in categories: computing, mobile phones, nanotechnology, particle physics

A team of researchers based in Manchester, the Netherlands, Singapore, Spain, Switzerland and the U.S. has published a new review on a field of computer device development known as spintronics, which could see graphene used as building block for next-generation electronics.

Recent theoretical and experimental advances and phenomena in studies of electronic spin transport in and related two-dimensional (2-D) materials have emerged as a fascinating area of research and development.

Spintronics is the combination of electronics and magnetism, at the nanoscale and could lead to next generation high-speed electronics. Spintronic devices are a viable alternative for nanoelectronics beyond Moore’s law, offering higher energy efficiency and lower dissipation as compared to conventional electronics, which relies on charge currents. In principle we could have phones and tablets operating with spin-based transistors and memories.

Jun 1, 2020

Researchers Propose New Diamond Nanostructure For Efficient Energy Storage

Posted by in categories: chemistry, computing, cyborgs, nanotechnology, sustainability

One of the biggest challenges for renewable energy research is energy storage. The goal is to find a material with high energy storage capacity and energy storage material with high storage capacity that can also quickly and efficiently discharge a large amount of energy. In an attempt to overcome this hurdle, researchers at the Queensland University of Technology (QUT) have proposed a brand-new carbon nanostructure designed to store energy in mechanical form.

Most portable energy storage devices currently rely on storing energy in chemical form such as batteries, however this proposed new structure, made from a bundle of diamond nanothread (DNT) does not suffer from the same limiting properties as batteries, such as temperature sensitivity, or the potential to leak or explode. I have previously written about carbon nanotubes, and their applications in everything from Batman-like artificial muscle, to an analogy of the fictional element Vibranium, but a lot of research around carbon nanotubes is already focused on energy harvesting and energy storage applications.

What makes this energy storage method different is the method by which energy is stored, and also the related increased robustness of the resultant material. Dr Haifei Zhan and his team at the QUT Centre for material science used computer modelling to propose the structure of these ultra-thin one-dimensional carbon threads. The theory is that these threads should be able to store energy when they are twisted or stretched, similar to the way we store energy in wind-up toys. By turning the key, we force the spring inside into a tight coil. Once the key is released, the coil wishes to release the extra tension held within it and begins to unfurl. In doing so it transfers that mechanical energy into the movement of the toy’s wheels.

Jun 1, 2020

Iron Nanorobots Go Undercover to Track Living Cells Inside the Body

Posted by in categories: biotech/medical, nanotechnology

Customizable magnetic iron nanowires pinpoint and track the movements of target cells.

Living cells inside the body could be placed under surveillance—their location and migration noninvasively tracked in real time over many days—using a new method developed by researchers at KAUST.

The technique uses magnetic core-shell iron nanowires as nontoxic contrast agents, which can be implanted into live cells, lighting up those cells’ location inside a living organism when scanned by magnetic resonance imaging (MRI). The technique could have applications ranging from studying and treating cancer to tracking live-cell medical treatments, such as stem cell therapies.

May 31, 2020

Nanotech Breakthrough Could Revolutionize Night Vision

Posted by in category: nanotechnology

Circa 2016


Researchers build “teeny, tiny structures” that can change infrared to visible light.

Continue reading “Nanotech Breakthrough Could Revolutionize Night Vision” »

May 31, 2020

$3 Million Kavli Prizes Awarded to Scientists for Discoveries in Astrophysics, Nanoscience, Neuroscience

Posted by in categories: nanotechnology, neuroscience

The Norwegian Academy of Science and Letters today announced the 2020 Kavli Prize Laureates in the fields of astrophysics, nanoscience, and neuroscience. This year’s Kavli Prize honors scientists whose research has transformed our understanding of the very big, the very small and the very complex. The laureates in each field will share USD 1 million.

This year’s Kavli Prize Laureates are:

May 31, 2020

Making Quantum ‘Waves’ in Ultrathin Materials – Plasmons Could Power a New Class of Technologies

Posted by in categories: chemistry, energy, nanotechnology, quantum physics

Study co-led by Berkeley Lab reveals how wavelike plasmons could power up a new class of sensing and photochemical technologies at the nanoscale.

Wavelike, collective oscillations of electrons known as “plasmons” are very important for determining the optical and electronic properties of metals.

In atomically thin 2D materials, plasmons have an energy that is more useful for applications, including sensors and communication devices, than plasmons found in bulk metals. But determining how long plasmons live and whether their energy and other properties can be controlled at the nanoscale (billionths of a meter) has eluded many.

May 30, 2020

Teslaphoresis-activated self-assembling carbon nanotubes look even cooler than they sound

Posted by in categories: materials, nanotechnology

Circa 2016


Not all important scientific research is cool looking, or has a cool name. But now and then you get something with both. These self-assembling carbon nanotubes are created with a process called Teslaphoresis. If you’ve read a more impressive-sounding sentence today, I’d like to hear it.

Even the lab of Rice University chemist Paul Cherukuri looks like a proper mad scientist’s lair. But don’t let the flashy trappings fool you: this is a very significant development.

Continue reading “Teslaphoresis-activated self-assembling carbon nanotubes look even cooler than they sound” »

May 29, 2020

Anyons bunch together in a 2D conductor

Posted by in categories: nanotechnology, particle physics, quantum physics, space

Anyons – the particle-like collective excitations that can exist in some 2D materials – tend to bunch together in a two-dimensional conductor. This behaviour, which has now been observed by physicists at the Laboratory of Physics of the ENS (LPENS) and the Center for Nanoscience and Nanotechnologies (C2N) in Paris, France, is completely different to that of electrons, and experimental evidence for it is important both for fundamental physics and for the potential future development of devices based on these exotic quasiparticles.

The everyday three-dimensional world contains two types of elementary particles: fermions and bosons. Fermions, such as electrons, obey the Pauli exclusion principle, meaning that no two fermions can ever occupy the same quantum state. This tendency to flee from each other is at the heart of a wide range of phenomena, including the electronic structure of atoms, the stability of neutron stars and the difference between metals (which conduct electric current) and insulators (which don’t). Bosons such as photons, on the other hand, tend to bunch together – a gregarious behaviour that gives rise to superfluid and superconducting behaviours when many bosons exist in the same quantum state.

Within the framework of quantum mechanics, fermions also differ from bosons in that they have antisymmetric wavefunctions – meaning that a minus sign (that is, a phase φ equal to π) is introduced whenever two fermions are exchanged. Bosons, in contrast, have symmetric wavefunctions that remain the same when two bosons are exchanged (φ=0).

May 29, 2020

Static electricity as strong as lightning can be saved in a battery

Posted by in categories: energy, nanotechnology

Prof. Dong Sung Kim and his joint research team presented a new technology that can increase the amount of power generated by a triboelectric nanogenerator. The research team developed a high-efficiency integrated circuit to obtain reliable and practical electrical energy from the triboelectric nanogenerator.