Upcoming International Conference at “3rd World Congress on NanoScience, Nanotechnology & Advanced Materials (WCNSN-2022)”scheduled on February 21–22, 2022 at Dubai, UAE. Which bounded with the theme “Fueling the Core of Trends in Nanotechnology & Advanced Materials”
WCNSN-2022 primary goal is to bring all the experts in Nano-field and proclaim the knowledge, share the innovative ideas among academicians, scholars, industrialists, researchers, developers and students, more over it is great platform to create new contacts with the experts in NanoScience and Nanotechnology field throughout the world.
WCNSN-2022 includes plenary presentations, keynote session, oral talks, posters, exhibitions, workshops, symposium and interactive discussions.
To get a discount, Please use code: VF-PHR2021
If you are interested and want more information do not hesitate to contact me. I’ll be happy to help you.
Have a nice day!
Archive for the ‘nanotechnology’ category: Page 141
Nov 17, 2021
Cellular Computing: “Logic Gate” Paves Way for Nanoscale Computers To Treat Cancer and Other Diseases
Posted by Dan Kummer in categories: biotech/medical, computing, health, nanotechnology
The creation of nanoscale computers for use in precision health care has long been a dream of many scientists and health care providers. Now, for the first time, researchers at Penn State have produced a nanocomputing agent that can control the function of a particular protein that is involved in cell movement and cancer metastasis. The research paves the way for the construction of complex nanoscale computers for the prevention and treatment of cancer and other diseases.
Nikolay Dokholyan, G. Thomas Passananti Professor, Penn State College of Medicine, and his colleagues — including Yashavantha Vishweshwaraiah, postdoctoral scholar in pharmacology, Penn State — created a transistor-like ‘logic gate,’ which is a type of computational operation in which multiple inputs control an output.
“Our logic gate is just the beginning of what you could call cellular computing,” he said, “but it is a major milestone because it demonstrates the ability to embed conditional operations in a protein and control its function, said Dokholyan. ” It will allow us to gain a deeper understanding of human biology and disease and introduces possibilities for the development of precision therapeutics.”
Nov 17, 2021
AI Can Now Model the Molecular Machines That Govern All Life
Posted by Genevieve Klien in categories: biotech/medical, life extension, nanotechnology, robotics/AI
This month, the UW team upped their game.
Tapping into both AlphaFold and RoseTTAFold, they tweaked the programs to predict which proteins are likely to tag-team and sketched up the resulting complexes into a 3D models.
Using AI, the team predicted hundreds of complexes—many of which are entirely new—that regulate DNA repair, govern the cell’s digestive system, and perform other critical biological functions. These under-the-hood insights could impact the next generation of DNA editors and spur new treatments for neurodegenerative disorders or anti-aging therapies.
Nov 16, 2021
Competing quantum interactions enable single molecules to stand up
Posted by Shubham Ghosh Roy in categories: computing, nanotechnology, quantum physics
Nanoscale machinery has many uses, including drug delivery, single-atom transistor technology, or memory storage. However, the machinery must be assembled at the nanoscale, which is a considerable challenge for researchers.
For nanotechnology engineers the ultimate goal is to be able to assemble functional machinery part-by-part at the nanoscale. In the macroscopic world, we can simply grab items to assemble them. It is not impossible to “grab” single molecules anymore, but their quantum nature makes their response to manipulation unpredictable, limiting the ability to assemble molecules one by one. This prospect is now a step closer to reality, thanks to an international effort led by the Research Centre Jülich of the Helmholtz society in Germany, including researchers from the Department of Chemistry at the University of Warwick.
In the paper, “The stabilization potential of a standing molecule,” published today, 10 November 2021 in the journal Science Advances, an international team of researchers has been able to reveal the generic stabilization mechanism of a single standing molecule, which can be used in the rational design and construction of three-dimensional molecular devices at surfaces.
Nov 15, 2021
Construction’s Graphene Revolution Has (Finally) Begun
Posted by Raphael Ramos in categories: energy, nanotechnology
From super-strength concrete to fortified infrastructure, this is what the ‘wonder material for the 21st century’ is now bringing to construction. For more by Tomorrow’s Build subscribe now — https://bit.ly/3vOOJ98
Executive Producer and Narrator — Fred Mills.
Producer — Adam Savage.
Video Editing and Graphics — Thomas Canton.
Continue reading “Construction’s Graphene Revolution Has (Finally) Begun” »
Nov 12, 2021
“Whispering Gallery” Microresonator Can Measure Individual Nanoparticles
Posted by Shubham Ghosh Roy in categories: biotech/medical, health, nanotechnology
Forget all the nanotechnology devoted to fighting cancer, and just consider that nanoparticles have invaded makeup, anti-odor socks, sunscreen, plastic beer bottles and home pregnancy tests. Now scientists have developed a way to assess the health and environmental impact of such nanoparticles: a tiny microresonator that can detect and measure individual particles smaller than a single virus.
The microresonator is a lab-on-a-chip that harnesses the “whispering gallery” concept that’s displayed by buildings such as St. Paul’s Cathedral in London. The cathedral’s domed gallery can carry whispers easily across to the other side, but normal-volume voices end up garbled after bouncing around the dome multiple times.
Similarly, microresonators can bounce laser light many times around a circular “waveguide,” such as a glass ring. A laser frequency must perfectly fit the circumference of a ring to achieve this whispering-gallery mode.
Nov 12, 2021
Is Elon Musk’s NEURALINK ALREADY OBSOLETE? | Future of Brain Computer Interfaces
Posted by Dan Breeden in categories: biotech/medical, Elon Musk, nanotechnology, robotics/AI, virtual reality
Elon Musk’s revolutionary company Neuralink plans to insert Computer Chips into peoples brains but what if there’s a safer and even more performant way of merging humans and machines in the future?
Enter DARPAs plan to help the emergence of non-invasive brain computer interfaces which led to the organization Battelle to create a kind of Neural Dust to interface with our brains that might be the first step to having Nanobots inside of the human body in the future.
How will Neuralink deal with that potential rival with this cutting edge technology? Its possibilities in Fulldive Virtual Reality Games, Medical Applications, merging humans with artificial intelligence and its potential to scale all around the world are enormous.
Nov 11, 2021
Materials advancement accelerates the realization of AI technology
Posted by Dan Kummer in categories: government, nanotechnology, robotics/AI
Researchers in Korea succeeded in developing a core material for the next-generation neuromorphic (neural network imitation) semiconductor for the first time in the country. This is a result of a research team led by Dr. Jung-dae Kwon and Yong-hun Kim of the Department of Energy and Electronic Materials of the Korea Institute of Materials Science, together with Professor Byungjin Cho’s research team at Chungbuk National University. KIMS is a government-funded research institute under the Ministry of Science and ICT.
This new concept memtransistor uses a two-dimensional nanomaterial with a thickness of several nanometers. By reproducibly imitating the electrical plasticity of nerve synapses with more than 1,000 electrical stimulations, the researchers succeeded in obtaining a high pattern recognition rate of about 94.2% (98% of simulation-based pattern recognition rate).
Molybdenum sulfur (MoS2), widely used as a semiconductor material, works on the principle that defects in a single crystal are moved by an external electric field, which makes it difficult to precisely control the concentration or shape of the defect. To solve the problem, the research team sequentially stacked an oxidic layer of niobium oxide (Nb2O5) and a molybdenum sulfur material and succeeded in developing an artificial synaptic device having a memtransistor structure with high electrical reliability by an external electric field. In addition, they have demonstrated that the resistance switching characteristics can be freely controlled by changing the thickness of the niobium oxidic layer, and that brain information related to memory and forgetting can be processed with a very low energy of 10 PJ (picojoule).
Nov 10, 2021
3D printing nanoresonators: Towards miniaturized and multifunctional sensors
Posted by Dan Kummer in categories: 3D printing, mobile phones, nanotechnology
Micro-electro-mechanical devices (MEMS) are based on the integration of mechanical and electrical components on a micrometer scale. We all use them continuously in our everyday life: For example, in our mobile phones there are at least a dozen MEMS that regulate different activities ranging from motion, position, and inclination monitoring of the phone; active filters for the different transmission bands, and the microphone itself.
Even more interesting is the extreme nanoscale miniaturization of these devices (NEMS), because it offers the possibility of creating inertial, mass and force sensors with such sensitivity that they can interact with single molecules.
However, the diffusion of NEMS sensors is still limited by the high manufacturing cost of traditional silicon-based technologies. Conversely, new technologies such as 3D printing have shown that similar structures can be created at low cost and with interesting intrinsic functionalities, but to date the performance as mass sensors are poor.
Nov 7, 2021
This New 5D Storage Technology Offers 1000 Times More Density Than Blu-Ray
Posted by Shailesh Prasad in categories: biotech/medical, computing, nanotechnology
Scientists at the University of Southampton have achieved a data storage breakthrough, offering intense density and long-term archiving capabilities. With this new data storage, you can easily store up to 500 terabytes on a single CD-sized disc. Whether the data is information from museums and libraries to a person’s DNA records, it can store it all and much more!
This technology is known as five-dimensional (5D) optical storage and was first demonstrated back in 2013 when scientists were successful in using it to record and retrieve a 300-kb text file. It might not seem like much, but at that time, it was a breakthrough in data storing technologies just like how floppy discs played the same part some thousand years ago.
The data is written using a femtosecond laser which emits short but powerful pulses of light, forging tiny structures in glass that are measured in nanoscale. These structures contain information on the intensity and polarization of the laser beam in addition to the 3D space, hence it is referred as 5D data storage.