Menu

Blog

Archive for the ‘nanotechnology’ category: Page 138

Jan 27, 2022

How Lecturers Without Borders Shares The Joy Of Science

Posted by in categories: alien life, chemistry, mathematics, nanotechnology, neuroscience, physics, robotics/AI, science, sustainability

If you are a scientist, willing to share your science with curious teens, consider joining Lecturers Without Borders!


Established by three scientists, Luibov Tupikina, Athanasia Nikolau, and Clara Delphin Zemp, and high school teacher Mikhail Khotyakov, Lecturers Without Borders (LeWiBo) is an international volunteer grassroots organization that brings together enthusiastic science researchers and science-minded teens. LeWiBo founders noticed that scientists tend to travel a lot – for fieldwork, conferences, or lecturing – and realized scientists could be a great source of knowledge and inspiration to local schools. To this end, they asked scientists to volunteer for talks and workshops. The first lecture, delivered in Nepal in 2017 by two researchers, a mathematician and a climatologist, was a great success. In the next couple of years, LeWiBo volunteers presented at schools in Russia and Belarus; Indonesia and Uganda; India and Nepal. Then, the pandemic forced everything into the digital realm, bringing together scientists and schools across the globe. I met with two of LeWiBo’s co-founders, physicist Athanasia Nikolaou and math teacher Mikhail Khotyakov, as well as their coordinator, Anastasia Mityagina, to talk about their offerings and future plans.

Julia Brodsky: So, how many people volunteer for LeWiBo at this time?

Continue reading “How Lecturers Without Borders Shares The Joy Of Science” »

Jan 27, 2022

Upcycled adhesive is one of the toughest materials ever reported

Posted by in categories: chemistry, nanotechnology

The strong new adhesive is the handiwork of scientists at the US Department of Energy’s Oak Ridge National Laboratory (ORNL), who used polystyrene-b-poly(ethylene-co-butylene)-b-polystyrene, or SEBS, as their starting point. This rubbery polymer can be found in toothbrushes, handlebar grips and diapers, and the researchers were able to equip it with powerful new capabilities by making tweaks to its chemical structure.

This was achieved through a process known as dynamic crosslinking, which enables the bridging of typically incompatible materials. The scientists used the technique to couple silica nanoparticles and the polymer with the help of compounds called boronic esters, resulting in a novel crosslinked composite material they’ve called SiNP. The boronic esters are key to the reusability of the adhesive, as they enable the crosslinked bonds to be formed and broken repeatedly.

Jan 21, 2022

What to Expect in Neuroscience, Genetics, Longevity, Biotech, and Psychedelics in 2022

Posted by in categories: biotech/medical, genetics, nanotechnology, neuroscience

Church points to factors that helped make such a success of three of the top COVID-19 vaccine technologies. For one thing, they all used gene therapy technologies, and each was a new method relative to the past and to each other. For instance, the AstraZeneca vaccine was based on an adenovirus capsid containing double-stranded DNA as opposed to an adeno-associated virus (AAV) of the Johnson & Johnson/Janssen vaccine, while the Moderna and Pfizer/BioNTech vaccines were based on single-stranded mRNA inside lipid nanoparticles.

“Implementation science is the unsung handmaiden of biomedical discovery!”

Secondly, each of them was approved by the FDA 10 times faster than the vast majority of therapeutic products, and finally, the cost per vaccine has been as low as $2 per dose for the United Nations’ COVAX global access program. That’s about a million times cheaper than Zolgensma, he says, referring to the AAV gene therapy medication used to treat spinal muscular atrophy. So since “any one of these could spark a revolution,” according to Church, imagine what could happen in the next 12 months if all four factors pertain again?

Jan 21, 2022

Scientists Built a Super Fast Quantum Battery

Posted by in categories: energy, nanotechnology, quantum physics

Researchers from the Institute of Photonics and Nanotechnologies of the Cnr and the Politecnico di Milano have built a battery which, following the laws of quantum physics, has a recharge time that is inversely related to the amount of stored energy.

Quantum batteries are a new class of energy storage devices that operate according to the principles of quantum physics, the science that studies the infinitely small where the laws of classical physics do not always apply. Tersilla Virgili of the Institute of Photonics and Nanotechnologies of the National Research Council (Cnr-Ifn) and Giulio Cerullo of the Physics Department of the Politecnico di Milano have shown that it is possible to manufacture a type of quantum battery where the charging power increases faster by increasing the battery capacity. The work, carried out together with other international research groups, was published in Science Advances.

“Quantum batteries have a counter-intuitive property in which the recharge time is inversely related to the battery capacity, that is the amount of stored electrical charge,” explains Virgili. “This leads to the intriguing idea that the charging power of quantum batteries is super-extensive, meaning that it increases faster with battery size.”

Jan 21, 2022

Trapping tiny particles: A versatile tool for nanomanipulation

Posted by in categories: biotech/medical, nanotechnology, quantum physics

At just 1/1000th of a millimeter, nanoparticles are impossible to see with the naked eye. But, despite being small, they’re extremely important in many ways. If scientists want to take a close look at DNA, proteins, or viruses, then being able to isolate and monitor nanoparticles is essential.

Trapping these particles involves tightly focusing a to a point that produces a strong electromagnetic field. This beam can hold particles just like a pair of tweezers but, unfortunately, there are natural restrictions to this technique. Most notable are the size restrictions—if the particle is too small, the technique won’t work. To date, optical tweezers have been unable to hold particles like individual proteins, which are only a few nanometers in diameter.

Now, due to recent advances in nanotechnology, researchers in the Light-Matter Interactions for Quantum Technologies Unit at the Okinawa Institute of Science and Technology Graduate University (OIST) have developed a technique for precise nanoparticle trapping. In this study, they overcame the natural restrictions by developing optical tweezers based on —a synthetic material with specific properties that do not occur naturally. This was the first time that this kind of metamaterial had been used for single nanoparticle trapping.

Jan 20, 2022

Cancer Cell Nanotubes Hijack Mitochondria from Immune Sentinels

Posted by in categories: biotech/medical, nanotechnology

Cancer cells send out nanotubes to suck mitochondria from immune cells, finds a November 18 study in Nature Nanotechnology. The pilfered organelles allow the cancer cells to replenish their power while weakening T cells—a finding that could lead to new avenues for assailing tumors.

“It’s surprising that the transfer of mitochondria happened between different cell types, intriguingly between immune cells and cancer cells,” writes cancer biologist Ming Tan of China Medical University in Taiwan, who was not involved in this study, in an email to The Scientist. While researchers have observed mitochondrial transfer between cells before, most cases occurred between two cells of the same type. “Moreover, the mitochondrial transfer appears to have a significant impact on tumor cells escaping from immune surveillance,” Tan adds. “This is exciting because [of] its potential therapeutic implications.”

See “Nanotubes Link Immune Cells.

Jan 19, 2022

Thread robot is designed to remove blood clots in brain

Posted by in categories: biotech/medical, nanotechnology, nuclear energy, robotics/AI

MIT team develops steerable soft thread-like robot capable of navigating tiny blood vessels

Snake robots are among the most familiar type of mechanical device for working in confined spaces. Flexible, tubular robots have been used for applications such as working in the interior of nuclear reactors, water distribution systems and inside the human body to aid surgery. The MIT team, mechanical engineers affiliated to the institution’s Institute for Soldier Nanotechnologies, have downsized the snake paradigm to the scale of a thread half a millimetre in diameter, which can be remotely controlled by magnetic fields to worm its way through the convoluted blood vessels of the brain to deliver clot-busting drugs or devices to break up and remove the blockage. Such robots have the potential to quickly treat a stroke and prevent damage to the brain, the team claims.

Jan 18, 2022

Creating diamonds at room temperature from carbon nanofibers and nanotubes

Posted by in category: nanotechnology

Circa 2019


NC State researchers created diamonds at room temperature in 2015 using carbon thin films. Now, they made diamonds using carbon nanofibers and nanotubes.

Jan 18, 2022

Magnetic Surprise Revealed in “Magic-Angle” Graphene — Potential Quantum Computing Applications

Posted by in categories: computing, nanotechnology, quantum physics

Magnets and superconductors don’t normally get along, but a new study shows that ‘magic-angle’ graphene is capable of producing both superconductivity and ferromagnetism, which could be useful in quantum computing.

When two sheets of the carbon nanomaterial graphene are stacked together at a particular angle with respect to each other, it gives rise to some fascinating physics. For instance, when this so-called “magic-angle graphene” is cooled to near absolute zero 0, it suddenly becomes a superconductor, meaning it conducts electricity with zero resistance.

Now, a research team from Brown University has found a surprising new phenomenon that can arise in magic-angle graphene. In research published in the journal Science, the team showed that by inducing a phenomenon known as spin-orbit coupling, magic-angle graphene becomes a powerful ferromagnet.

Jan 17, 2022

Toward superior nanoscale sensing and imaging with optimized diamond probes

Posted by in categories: biological, nanotechnology, particle physics, quantum physics

From the discovery of microorganisms in the field of biology to imaging atoms in the field of physics, microscopic imaging has improved our understanding of the world and has been responsible for many scientific advances. Now, with the advent of spintronics and miniature magnetic devices, there is a growing need for imaging at nanometer scales to detect quantum properties of matter, such as electron spins, magnetic domain structure in ferromagnets, and magnetic vortices in superconductors.

Typically, this is done by complementing standard microscopy techniques, such as scanning tunneling microscopy and (AFM), with magnetic sensors to create “scanning magnetometry probes” that can achieve nanoscale imaging and sensing. However, these probes often require ultrahigh vacuum conditions, extremely low temperatures, and are limited in spatial resolution by the probe size.

In this regard, nitrogen-vacancy (NV) centers in diamond (defects in diamond structure formed by nitrogen atoms adjacent to “vacancies” created by missing atoms) have gained significant interest. The NV pair, it turns out, can be combined with AFM to accomplish local magnetic imaging and can operate at room temperature and pressures. However, fabricating these probes involve complex techniques that do not allow for much control over the probe shape and size.