Toggle light / dark theme

Developing new nanoparticle treatments for brain tumors

Northwestern Medicine investigators have developed a novel nanoparticle treatment for glioblastoma, according to a study published in Nature Communications.

Glioblastoma, the most common type of primary brain cancer, is one of the most complex, deadly and treatment-resistant cancers, according to the National Brain Tumor Society. The five-year survival rate for patients hovers near 7% and has remained unchanged for decades.

Previous Northwestern Medicine research has shown that glioblastoma tumors accumulate large numbers of immunosuppressive tumor-associated (TAMCs), which impairs the immune system’s ability to fight the tumor and reduces the effectiveness of radiation and chemotherapy.

Confinement effects of carbon nanotubes on polyoxometalate clusters enhance electrochemical energy storage

Carbon nanotubes (CNTs) are considered ideal electrochemical energy storage materials due to their high electrical conductivity, large theoretical surface area, and good chemical stability.

However, CNTs tend to aggregate due to strong van der Waals forces, which reduces their electrochemically active area. This problem is even worse for (SWNTs) due to their high length-to-diameter ratio.

Recently, a joint research team led by Dr. Wang Xiao from the Shenzhen Institute of Advanced Technology (SIAT) of the Chinese Academy of Sciences, Dr. Zhu Sheng from Shanxi University, and Prof. Li Yan from Peking University has encapsulated polyoxometalate guest molecules within SWNTs (with a diameter of approximately 1.4 nm) to enhance the electrochemical energy storage of CNTs.

Nanomedicine: Using a patient’s immune cells to prevent the spread of cancer

The fact that our immune systems capture and destroy nanoparticles and the drugs they carry has been a problem in the field of nanomedicine for some time. But, in the fight against cancer, researchers are now attempting to exploit this problem to their advantage.

Researchers around the world are seeking to identify techniques that use nanoparticles in the treatment of disease. Such particles are about 100 nanometers—one thousandth of a millimeter—in diameter, and within them researchers are inserting large numbers of even smaller drug molecules.

Optimism for this approach in the treatment of various forms of cancer has been particularly great.

A potential milestone in cancer therapy: Team discovers weak spot in prostate cancer cells

Prostate cancer is the most common non-skin cancer in men worldwide. According to international estimates about one in six men will get prostate cancer during their lifetime and worldwide, over 375,000 patients will die from it each year. Tumor resistance to current therapies plays an essential role in this and new approaches are therefore urgently needed.

Now an international research team from the University of Bern, Inselspital Bern and the University of Connecticut has identified a previously unknown weak spot in . This weak spot is possibly also present in other . The study was led by Mark Rubin from the Department for Biomedical Research (DBMR) and Center for Precision Medicine (BCPM) at the University of Bern and Inselspital Bern, and Rahul Kanadia from the Department of Physiology and Neurobiology and the Institute for Systems Genomics at the University of Connecticut. The research results have been published in the journal Molecular Cell.

“We took a closer look at a certain molecular machine called the ,” explains Anke Augspach, lead author of the study and researcher from the Department for BioMedical Research (DBMR). “It plays an important role in the translation of genes into proteins. In this process, the spliceosome separates parts of the gene that are not needed for the production of the protein and fuses the other parts.”

Powerful microscope captures motor proteins in unprecedented detail

Almost as soon as there were super-resolution microscopes, scientists pointed them towards molecular motors called kinesins. These proteins, powered by the molecular fuel ATP, drive crucial processes including cell division, cell signalling and intracellular transport by shuttling cargo along protein highways called microtubules. Researchers have long wanted to understand how these motors work, but to visualize them, scientists have had to slow them down or isolate them in simplified, in vitro systems.

Now, in papers published concurrently in Science, two teams working independently have used a super-resolution tool called MINFLUX to study the motor in near-real time at physiologically relevant concentrations of ATP. The first paper, led by MINFLUX’s inventor, Stefan Hell, who has a joint appointment at the Max Planck Institute (MPI) for Multidisciplinary Sciences in Göttingen and the MPI for Medical Research in Heidelberg, both in Germany, used a new instrument design to track the protein in 3D, revealing details about its motion1. The second, led by biophysicist Jonas Ries at the European Molecular Biology Laboratory in Heidelberg, showed for the first time that MINFLUX is capable of tracking kinesin even amid the bustle of living cells2.

“This technology requires a lot of different things to work, and it’s fun to see all of these things coming together,” says Michelle Digman, a biomedical engineer at the University of California, Irvine, who develops imaging strategies but was not involved in either study. “It seemed like a proof of concept to show that they’re able to track kinesin very precisely. And when you have the live cell system, that’s even more spectacular.”

Foresight Institute

Is a research organization and non-profit that supports the beneficial development of high-impact technologies. Since our founding in 1987 on a vision of guiding powerful technologies, we have continued to evolve into a many-armed organization that focuses on several fields of science and technology that are too ambitious for legacy institutions to support.

From molecular nanotechnology, to brain-computer interfaces, space exploration, cryptocommerce, and AI, Foresight gathers leading minds to advance research and accelerate progress toward flourishing futures.

Google Engineer Turned Futurist Predicts AI-Enabled Immortality For Humans

Former Google engineer and esteemed futurist Ray Kurzweil has made another bold prediction: Immortality is within reach for humans by 2030, thanks to the help of nanorobots. You read that right — humans could potentially live forever, according to Kurzweil.

Don’t Miss: Why Jason Calacanis and Other Silicon Valley Elites Are Betting On This Startups Vision For Re-Uniting American Families

Kurzweil, who has a track record of accurate predictions such as foreseeing a computer beating humans in chess by 2000, shared his prediction in a recent YouTube series by tech vlogger Adagio. The 75-year-old computer scientist believes that advancements in genetics, robotics and nanotechnology will allow tiny robots to run through veins, repairing any damage and keeping people alive indefinitely.

Revolutionary 3D Printing Technology a “Game Changer” for Discovering and Manufacturing New Materials

A novel 3D printing method called high-throughput combinatorial printing (HTCP) has been created that significantly accelerates the discovery and production of new materials.

The process involves mixing multiple aerosolized nanomaterial inks during printing, which allows for fine control over the printed materials’ architecture and local compositions. This method produces materials with gradient compositions and properties and can be applied to a wide range of substances including metals, semiconductors.

Semiconductors are a type of material that has electrical conductivity between that of a conductor (such as copper) and an insulator (such as rubber). Semiconductors are used in a wide range of electronic devices, including transistors, diodes, solar cells, and integrated circuits. The electrical conductivity of a semiconductor can be controlled by adding impurities to the material through a process called doping. Silicon is the most widely used material for semiconductor devices, but other materials such as gallium arsenide and indium phosphide are also used in certain applications.

Creating complex protocells and prototissues using simple DNA building blocks Communications

Legitimately awesome paper wherein Arulkumaran et al. assemble DNA nanotubes and use them to build artificial ‘cytoskeletons’ inside of giant unilamellar vesicles. They go on to make a variety of fun variations on this theme and eventually build artificial ‘tissues’ made up of these synthetic cell-like vesicles and an ‘extracellular matrix’ that is also made of DNA nanotubes. I find this paper impressive due to how performs precise engineering at the nanoscale and builds up layers of complexity until macroscale specimens are created in a fashion reminiscent of biological systems, yet unique in its own way. #biotechnology #nanotechnology #cellbiology #bioengineering


Building synthetic protocells and prototissues hinges on the formation of biomimetic skeletal frameworks. Here, the authors harness simplicity to create complexity by assembling DNA subunits into structural frameworks which support membrane-based protocells and prototissues.

/* */