Menu

Blog

Archive for the ‘nanotechnology’ category: Page 123

Jul 1, 2022

Michelle Simmons: quantum machines at the atomic limit | The Royal Society

Posted by in categories: biological, nanotechnology, particle physics, quantum physics

Join Professor Michelle Simmons to find out how scientists are delivering Richard Feynman’s dream of designing materials at the atomic limit for quantum machines. 🔔Subscribe to our channel for exciting science videos and live events, many hosted by Brian Cox, our Professor for Public Engagement: https://bit.ly/3fQIFXB

#Physics #Quantum #RichardFeynman.

Continue reading “Michelle Simmons: quantum machines at the atomic limit | The Royal Society” »

Jun 30, 2022

Self Replicating Machines

Posted by in categories: biotech/medical, nanotechnology

A look at the concept of Self-Replicating Machines, Universal Assemblers, von Neumann Probes, Grey Goo, and Berserkers. While we will discuss the basic concept and some on-Earth applications like Medical Nanotechnology our focus will be on space exploration and colonization aspects.

Join the Facebook Group:
https://www.facebook.com/groups/1583992725237264/

Continue reading “Self Replicating Machines” »

Jun 30, 2022

Materials with nanoscale components will change what’s possible

Posted by in categories: engineering, nanotechnology

This year’s 35 Innovators are making it possible for familiar materials like glass, steel, and electronics to have completely new properties.

Jun 29, 2022

Using colloidal nanodiscs for 3D bioprinting tissues and tissue models

Posted by in categories: 3D printing, bioprinting, biotech/medical, engineering, nanotechnology

Extrusion-based 3D printing/bioprinting is a promising approach to generating patient-specific, tissue-engineered grafts. However, a major challenge in extrusion-based 3D printing and bioprinting is that most currently used materials lack the versatility to be used in a wide range of applications.

New nanotechnology has been developed by a team of researchers from Texas A&M University that leverages colloidal interactions of nanoparticles to print complex geometries that can mimic tissue and organ structure. The team, led by Dr. Akhilesh Gaharwar, associate professor and Presidential Impact Fellow in the Department of Biomedical Engineering, has introduced colloidal solutions of 2D nanosilicates as a platform technology to print complex structures.

2D nanosilicates are disc-shaped inorganic nanoparticles 20 to 50 nanometers in diameter and 1 to 2 nanometers in thickness. These nanosilicates form a “house-of-cards” structure above a certain concentration in water, known as a colloidal solution.

Jun 28, 2022

Turning plastic waste into hydrogen and high-value carbons

Posted by in categories: nanotechnology, particle physics

The ever-increasing production and use of plastics over the last half century has created a huge environmental problem for the world. Currently, most of the 4.9 billion tonnes of plastics ever produced will end up in landfills or the natural environment, and this number is expected to increase to around 12 billion tonnes by 2050.

In collaboration with colleagues at universities and institutions in the UK, China and the Kingdom of Saudi Arabia, researchers in the Edwards/ Xiao group at Oxford’s Department of Chemistry have developed a method of converting plastic waste into hydrogen gas which can be used as a clean fuel, and high-value solid carbon. This was achieved with a new type of catalysis developed by the group which uses microwaves to activate catalyst particles to effectively ‘strip’ hydrogen from polymers.

The findings, published in Nature Catalysis, detail how the researchers mixed mechanically-pulverised plastic particles with a microwave-susceptor catalyst of iron oxide and aluminium oxide. The mixture was subjected to microwave treatment and yielded a large volume of hydrogen gas and a residue of carbonaceous materials, the bulk of which were identified as carbon nanotubes.

Jun 28, 2022

Researchers Develop Stable Fibers Utilizing Boron Nitride Nanotubes

Posted by in categories: energy, nanotechnology

Researchers from Rice University claim that processing boron nitride nanotubes used to be challenging, but not anymore.

Professors Matteo Pasquali and Angel Martí, along with their team of researchers, have simplified the handling of the highly valuable nanotubes, making them more suited for use in large-scale applications including electronics, aerospace, and energy-efficient materials.

According to the study’s findings published in Nature Communications, boron nitride nanotubes, also known as BNNTs, can self-assemble into liquid crystals when exposed to certain circumstances, particularly concentrations of chlorosulfonic acid that are greater than 170 parts per million by weight.

Jun 28, 2022

Nanotechnology spans many disciplines

Posted by in categories: biotech/medical, nanotechnology, neuroscience

Nanotechnologist and co-founder of the Black in Nanotech initiative, Olivia Geneus. (Courtesy: Alexander Harold) Welcome to this Physics World Nanotechnology Briefing, which showcases the breadth of applications of modern nanotechnology.

Olivia Geneus is one of the growing number of scientists who are developing nanotechnologies for medicine. In an interview, the PhD student at the State University of New York at Buffalo explains how she is developing nanoparticles designed to cross the blood–brain barrier in order to image and destroy brain cancer cells. Geneus also talks about Black in Nanotech Week, which she co-founded, and the need to encourage Black children to consider careers in science.

Ed Lester of the UK’s University of Nottingham knows that there are myriad uses for nanoparticles. In 2007 he founded the company Promethean Particles when he realized industrial users were not able to source nanoparticles in the quantities and quality that they required. In an interview, Lester talks about some of the company’s development projects including nanoparticles for aviation, healthcare and energy.

Jun 28, 2022

Diamond nanothreads could beat batteries for energy storage

Posted by in categories: chemistry, computing, nanotechnology

Next big thing Haifei Zhan and colleagues reckon that carbon nanothreads have a future in energy storage. (Courtesy: Queensland University of Technology) Computational and theoretical studies of diamond-like carbon nanothreads suggest that…


Computational and theoretical studies of diamond-like carbon nanothreads suggest that they could provide an alternative to batteries by storing energy in a strained mechanical system. The team behind the research says that nanothread devices could power electronics and help with the shift towards renewable sources of energy.

The traditional go-to device for energy storage is the electrochemical battery, which predates even the widespread use of electricity. Despite centuries of technological progress and near ubiquitous use, batteries remain prone to the same inefficiencies and hazards as any device based on chemical reactions – sluggish reactions in the cold, the danger of explosion in the heat and the risk of toxic chemical leakages.

Continue reading “Diamond nanothreads could beat batteries for energy storage” »

Jun 28, 2022

Optical technique sorts nanodiamonds

Posted by in categories: biological, nanotechnology, quantum physics

A method of optically selecting and sorting nanoparticles according to their quantum mechanical properties has been developed by researchers in Japan. The method could prove a crucial tool for manufacturing nanostructures for quantum sensing, biological imaging and quantum information technology ( Sci. Adv. 7 eabd9551).

Scientists have several ways of manipulating and positioning tiny objects without touching them. Optical tweezers, for example, use a highly focused laser beam to generate optical forces that hold and move objects in the beam’s trajectory. However, such tweezers struggle to grasp nanoparticles because these tiny objects are much smaller than the wavelength of the laser light used.

Now, a team led by Hajime Ishihara of Osaka University and Keiji Sasaki at Hokkaido University has developed a way of using light to sort nanodiamonds. These are tiny pieces of semiconductor with very useful optoelectronic properties that derive from bulk diamond as well as certain defects such as nitrogen-vacancy (NV) centres.

Jun 28, 2022

Nanotube artificial muscles pick up the pace

Posted by in categories: biotech/medical, chemistry, cyborgs, nanotechnology, robotics/AI

An electrochemically powered artificial muscle made from twisted carbon nanotubes contracts more when driven faster thanks to a novel conductive polymer coating. Developed by Ray Baughman of the University of Texas at Dallas in the US and an international team, the device overcomes some of the limitations of previous artificial muscles, and could have applications in robotics, smart textiles and heart pumps.

Carbon nanotubes (CNTs) are rolled-up sheets of carbon with walls as thin as a single atom. When twisted together to form a yarn and placed in an electrolyte bath, CNTs expand and contract in response to electrochemical inputs, much like a natural muscle. In a typical set-up, a potential difference between the yarn and an electrode drives ions from the electrolyte into the yarn, causing the muscle to actuate.

While such CNT muscles are highly energy efficient and extremely strong – they can lift loads up to 100,000 times their own weight – they do have limitations. The main one is that they are bipolar, meaning that the direction of their movement switches whenever the potential drops to zero. This reduces the overall stroke of the actuator. Another drawback is that the muscle’s capacitance decreases when the potential is changed quickly, which also causes the stroke to decrease.