Toggle light / dark theme

How frozen baby corals and high-powered lasers could help dying reefs

In 2018, researchers reported that they had managed to get a coral larva to survive freezing and thawing for the first time. The scientists had added gold nanoparticles to their antifreeze to help the corals warm evenly during reheating. However, the thawed larvae were unable to settle and develop into adults. Instead, they kept swimming until they died.

When Narida began her experiments with hood corals in 2021, she included gold in her antifreeze recipe and combined several different antifreeze chemicals to reduce the solution’s toxicity. To thaw the animals quickly and minimize damage, Narida used a high-powered laser designed for welding jewelry. Then, she carefully washed the antifreeze away with seawater, rehydrating the corals. In the end, a whopping 11 percent of larvae in the experiment survived thawing, then settled, and developed into adults.

Leandro Godoy, a coral cryobiologist at the Federal University of Rio Grande do Sul in Brazil, is impressed by how many larvae survived after settling. “It’s a huge step,” he says, considering that, in the wild, only about five percent of corals make it that far.

Humans could get ‘super vision’ after nanotechnology lets mice see in dark

HUMANS could get the power to see in the dark after mice were injected with nanoparticles which gave them the ability to see infrared light.

The rodents were given infrared night vision for 10 weeks after the injection, with only minor side effects, in an experiment conducted by Chinese and US scientists.

The team at the University of Science and Technology of China said they could modify a human’s vision to detect a wider spectrum of colours.

This Startup Hopes Its Nanomaterial Fuel Tanks Will Jumpstart The Hydrogen Revolution

Hydrogen is a promising form of carbon-free energy, but moving and storing the superlight element is costly and energy-intensive. So a California startup cofounded in 2022 by two leading chemists, including a Nobel laureate, is designing a new type of tank made with nanomaterials that aims to be cheaper and safer than any currently in use — and hold more hydrogen, too.

Irvine, California-based H2MOF hopes to sell its next-generation hydrogen tanks sometime after 2024 to heavy-duty vehicle makers with plans to offer zero-emission fuel cell vehicles. It argues that in addition to holding fuel inside the vehicles, these tanks will also provide a better way to ship the fuel by truck or train as… More.


H2MOF thinks nanomaterials designed to hold hydrogen at low pressure like a sponge absorbing water are a cheaper, more efficient way to store the elemental fuel.

Artificial brain learns on the fly with nanowire networks

The research, which was published today in Nature Communications, is a joint effort by experts from the University of Sydney and the University of California at Los Angeles.

The artificial brain is made of nanowire networks, tiny wires a billion times smaller than a meter. The cables form random patterns that look like the game ‘Pick Up Sticks,’ but they also act like the neural networks in our brains. These networks can process information in different ways.

Physicists turn pencil lead into metaphorical ‘gold’

MIT physicists and colleagues have metaphorically turned graphite, or pencil lead, into gold by isolating five ultrathin flakes stacked in a specific order. The resulting material can then be tuned to exhibit three important properties never before seen in natural graphite.

“It is kind of like one-stop shopping,” says Long Ju, an assistant professor in the MIT Department of Physics and leader of the work, which is reported in the Nature Nanotechnology. “In this case, we never realized that all of these interesting things are embedded in graphite.”

Further, he says, “It is very rare to find materials that can host this many properties.”

Ferroelectric modulation of Fermi level of graphene oxide to enhance SERS response

Surface-enhanced Raman scattering (SERS) is a powerful fingerprint analysis and detection technique that plays an important role in the fields of food safety, environmental protection, bio-imaging and hazardous substance identification. Electromagnetic enhancement (EM) and chemical enhancement (CM) are the two recognized mechanisms of action for amplifying Raman signals.

EM originates from the localized surface plasmonic resonance effect of noble metal nanostructures such as gold, silver, and copper, while CM originates from the charge transfer between the substrate and the probe molecules. In principle, the charge transfer efficiency depends on the coupling of the incident laser energy to the energy levels of the substrate-molecule system.

Compared to EM-based SERS substrates, CM-based SERS substrates are usually made of including semiconductor oxides, metal carbides, and graphene and its evolutions, which have weaker signal enhancement capabilities. However, the advantages of CM-based SERS substrate, such as high specificity, homogeneity and biocompatibility, have attracted the attention of researchers.

Light guide plate based on perovskite nanocomposites

The fact that nanoparticle and polymer hybrid materials can often combine the advantages of each has been demonstrated in several fields. Embedding PNCs into polymer is an effective strategy to enhance the PNCs stability and polymer can endow the PNCs with other positive effects based on different structure and functional groups.

The uniform distribution of PNCs in is critical to the properties of the nanocomposites and the aggregation of PNCs induced by high surface energy has a severe influence on the performance of related applications. As such, the loading fraction is limited owing to the phase separation between PNCs and polymer.

Chemical interaction between PNCs and polymer is necessary to suppress the phase separation. Meanwhile, most of the fabrication methods of PNCs/polymer nanocomposites are spin coating, swelling-shrinking and electrospinning based on the in-situ synthesis of PNCs in polymer matrix and physical mixing, but extremely few works can achieve the fabrication of PNCs/ nanocomposites by bulk polymerization.

/* */