Toggle light / dark theme

Scientists from UNSW Sydney have demonstrated a novel technique for creating tiny 3D materials that could eventually make fuel cells like hydrogen batteries cheaper and more sustainable.

In the study published in Science Advances, researchers from the School of Chemistry at UNSW Science show it’s possible to sequentially “grow” interconnected in 3D at the nanoscale which have unique chemical and to support energy conversion reactions.

In chemistry, hierarchical structures are configurations of units like molecules within an organization of other units that themselves may be ordered. Similar phenomena can be seen in the , like in flower petals and tree branches. But where these structures have extraordinary potential is at a level beyond the visibility of the human eye—at the nanoscale.

@NatureNano is hiring!

If you are an expert in 2D materials, electronics, optoelectronics, nanophotonics, or electronic engineering and interested in a career in science publishing?

Apply by Jan 22nd 2023 and join the editorial team.


Associate or Senior Editor, Nature Nanotechnology, with Springer Nature. Apply Today.

For decades, transistors—the heart of computer chips—have been getting smaller and smaller. As a result, the electronic components in many devices can be made even more compact, faster and also more powerful. But is this development coming to a natural halt? The smaller the components, the greater the danger that individual defects in the atomic structure will significantly change the behavior of the component. This applies to the established silicon technology and novel nanotechnologies based on 2D materials.

At Vienna University of Technology (TU Wien), intensive work has been done on the physical description of this problem at the transistor level. Now the researchers are going a step further and looking at the influence of defects at the level of electronic circuits, which sometimes consist of several—sometimes even billions—of transistors. In some cases, individual transistors can operate outside the desired specification, but still perform well as part of a circuit consisting of several transistors. With this new approach at the circuit level, significant advances in miniaturization are still possible.

The study is published in the journal Advanced Materials.

This video was recorded at the Foresight Vision Weekend 2022 at Château du Feÿ in France.

Michael Greve | Longevity Investing.

Join us:
► Twitter: https://twitter.com/foresightinst.
► Facebook: https://www.facebook.com/foresightinst.
► Instagram: https://www.instagram.com/existentialhope/
► LinkedIn: https://www.linkedin.com/company/foresight-institute.
► Or visit: https://foresight.org/

If you enjoy what we do please support us via Patreon: https://www.patreon.com/foresightinstitute.

By Brookhaven National Laboratory

Scientists at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory have successfully demonstrated that autonomous methods can discover new materials. The artificial intelligence (AI)-driven technique led to the discovery of three new nanostructures, including a first-of-its-kind nanoscale “ladder.” The research was published today in Science Advances…

The newly discovered structures were formed by a process called , in which a material’s molecules organize themselves into unique patterns. Scientists at Brookhaven’s Center for Functional Nanomaterials (CFN) are experts at directing the self-assembly process, creating templates for materials to form desirable arrangements for applications in microelectronics, catalysis, and more. Their discovery of the nanoscale ladder and other new structures further widens the scope of self-assembly’s applications.

There’s a new nanomaterial on the block. University of Oregon chemists have found a way to make carbon-based molecules with a unique structural feature: interlocking rings.

Like other nanomaterials, these linked-together molecules have interesting properties that can be “tuned” by changing their size and chemical makeup. That makes them potentially useful for an array of applications, such as specialized sensors and new kinds of electronics.

“It’s a new topology for , and we’re finding new properties that we haven’t been able to see before,” said James May, a graduate student in chemistry professor Ramesh Jasti’s lab and the first author on the paper. May and his colleagues report their findings in a paper published in Nature Chemistry.

Year 2022 face_with_colon_three


Researchers have designed smart, color-controllable white light devices from quantum dots – tiny semiconductors just a few billionths of a meter in size – which are more efficient and have better color saturation than standard LEDs, and can dynamically reproduce daylight conditions in a single light.

The researchers, from the University of Cambridge, designed the next-generation smart lighting system using a combination of nanotechnology, color science, advanced computational methods, electronics, and a unique fabrication process.

“This research opens the way for a wide variety of new human-responsive lighting environments.” —

Australian engineers have discovered a new way of precisely controlling single electrons nestled in quantum dots that run logic gates. What’s more, the new mechanism is less bulky and requires fewer parts, which could prove essential to making large-scale silicon quantum computers a reality.

The serendipitous discovery, made by engineers at the quantum computing start-up Diraq and UNSW Sydney, is detailed in the journal Nature Nanotechnology.

“This was a completely new effect we’d never seen before, which we didn’t quite understand at first,” said lead author Dr. Will Gilbert, a quantum processor engineer at Diraq, a UNSW spin-off company based at its Sydney campus. “But it quickly became clear that this was a powerful new way of controlling spins in a quantum dot. And that was super exciting.”

Researchers have developed an optical coating system that combines antifogging and antireflective properties. The new technology could help boost the performance of lidar systems and cameras.

“Walking into a warm room from the cold outside can cause glasses to fog up, blinding the user,” said research team leader Anne Gärtner from Fraunhofer Institute for Applied Optics and Precision Engineering and Friedrich Schiller University Jena, both in Jena, Germany. “The same can happen to sensors such as the lidar systems used in autonomous cars. It is important that surfaces remain highly transparent, even if fogging occurs, so that functionality is maintained.”

In Applied Optics, Gärtner and colleagues describe how they combined a that prevents fogging with porous silicon dioxide nanostructures that reduce reflections. Although the coatings described in the paper were designed specifically for lidar systems, the technology can be tailored for many different applications.

Electric vehicles, powered by macroscopic electric motors, are increasingly prevalent on our streets and highways. These quiet and eco-friendly machines got their start nearly 200 years ago when physicists took the first tiny steps to bring electric motors into the world.

Now a multidisciplinary team led by Northwestern University has made an electric motor you can’t see with the naked eye: an on the molecular scale.

This early work—a motor that can convert into unidirectional motion at the —has implications for and particularly medicine, where the electric molecular motor could team up with biomolecular motors in the human body.