Toggle light / dark theme

This film by Ken Gumbs tackles the issue of pending greater-than-human artificial intelligence and the possible ramifications. Different individuals with different backgrounds are interviewed on the subject, including a theologian, a philosopher, a brain builder and a cyborg. A wide spectrum of topics are discussed, including trans-humanism, mind-machine mergers, uploading, and artificial super-intelligence.

An older article but something the world is facing just like in certain sci-fi movies.


The reference publication of the movement in the 80s, the Earth First journal, featured a column called Ask Ned Ludd, in reference to the mythical character that gave name to the luddites. Jones thinks that neo-luddites are in fact misreading the original luddites, but he believes that understanding the difference between the old and modern ones tells us a lot about the ideology of the latter.

“Luddites were not anti-technology: they were skilled craftsmen, involved in a labour movement aimed at keeping their machines and their jobs,” he says. “That’s very different from the neo-luddites ideas of relinquishing civilisation and [of] nature as the supreme good.” Jones thinks neo-luddism is fed rather by “the idea of technology as a disembodied, transcendent, terrifying force outside the human”, which emerged in the mid 20th century, with the bomb and the rise of large-scale computing.

It’s available on phones and now watches? That’s actually nice though I hope they make it battery efficient. The Pixel watch for example already has issues with battery life. I’m the future will there be a small AI server in our bodies in microchips or a network of nanobots?


ChatGPT is all the rage these days, but did you know you can get it on your watch? Here’s how to install it on a Galaxy Watch, Pixel Watch, and other Wear OS watches.

The nanoscale electronic parts in devices like smartphones are solid, static objects that once designed and built cannot transform into anything else. But University of California, Irvine physicists have reported the discovery of nanoscale devices that can transform into many different shapes and sizes even though they exist in solid states.

It’s a finding that could fundamentally change the nature of , as well as the way scientists research atomic-scale quantum materials. The study is published in Science Advances.

“What we discovered is that for a particular set of materials, you can make nanoscale electronic devices that aren’t stuck together,” said Javier Sanchez-Yamagishi, an assistant professor of physics & astronomy whose lab performed the new research. “The parts can move, and so that allows us to modify the size and shape of a device after it’s been made.”

The Singularity is a technological event horizon beyond which we cannot see – a moment in future history when exponential progress makes the impossible possible. This video discusses the concept of the Singularity, related technologies including AI, synthetic biology, cybernetics and quantum computing, and their potential implications.

My previous video “AI, Robots & the Future” is here:
https://www.youtube.com/watch?v=iaGIo_Viazs.

The episode on “The Metaverse: A Facebook Fantasy?” is here:

And I have a video on “Nanotechnology 2.0” here:

Proteins are involved in every biological process, and use the energy in the body to alter their structure via mechanical movements. They are considered biological ‘nanomachines’ because the smallest structural change in a protein has a significant effect on biological processes. The development of nanomachines that mimic proteins has received much attention to implement movement in the cellular environment. However, there are various mechanisms by which cells attempt to protect themselves from the action of these nanomachines. This limits the realization of any relevant mechanical movement of nanomachines that could be applied for medical purposes.

The research team led by Dr. Youngdo Jeong from the Center for Advanced Biomolecular Recognition at the Korea Institute of Science and Technology (KIST, President Seok-Jin Yoon) has reported the development of a novel biochemical nanomachine that penetrates the cell membrane and kills the cell via the molecular movements of folding and unfolding in specific cellular environments, such as cancer cells, as a result of a collaboration with the teams of Prof. Sang Kyu Kwak from the School of Energy and Chemical Engineering and Prof. Ja-Hyoung Ryu from the Department of Chemistry at the Ulsan National Institute of Science and Technology (UNIST, President Yong Hoon Lee), and Dr. Chaekyu Kim of Fusion Biotechnology, Inc.

The joint research team focused on the hierarchical structure of proteins, in which the axis of the large structure and the mobile units are hierarchically separated. Therefore, only specific parts can move around the axis. Most existing nanomachines have been designed so that the mobile components and axis of the large structure are present on the same layer. Thus, these components undergo simultaneous movement, which complicates the desired control of a specific part.

Called the nanofluidic drug-eluting seed (NDES), it delivers low-dose immunotherapy in the form of CD40 monoclonal antibodies (mAb).

In a significant groundbreaking medical development, researchers have created a tiny device, smaller than a grain of rice, to deliver drugs directly to the pancreatic tumor.

Nano-device uses less dosage to shrink cancer.


Houston Methodist.

Scientists have discovered yet another amazing aspect of the weird and wonderful behavior of water—this time when subjected to nanoscale confinement at sub-zero temperatures.

The finding that a crystalline substance can readily give up water at temperatures as low as −70 °C, published in the journal Nature on April 12, has major implications for the development of materials designed to extract water from the atmosphere.

A team of supramolecular chemists at Stellenbosch University (SU), consisting of Dr. Alan Eaby, Prof. Catharine Esterhuysen and Prof. Len Barbour, made this discovery while trying to understand the peculiar behavior of a type of crystal that first piqued their interest about ten years ago.