Edward Boyden is a Hertz Foundation Fellow and recipient of the prestigious Hertz Foundation Grant for graduate study in the applications of the physical, biological and engineering sciences. A professor of Biological Engineering and Brain and Cognitive Sciences at MIT, Edward Boyden explains how humanity is only at its infancy in merging with machines. His work is leading him towards the development of a “brain co-processor”, a device that interacts intimately with the brain to upload and download information to and from it, augmenting human capabilities in memory storage, decision making, and cognition. The first step, however, is understanding the brain on a much deeper level. With the support of the Fannie and John Hertz Foundation, Ed Boyden pursued a PhD in neurosciences from Stanford University.
The Hertz Foundation mission is to provide unique financial and fellowship support to the nation’s most remarkable PhD students in the hard sciences. Hertz Fellowships are among the most prestigious in the world, and the foundation has invested over $200 million in Hertz Fellows since 1963 (present value) and supported over 1,100 brilliant and creative young scientists, who have gone on to become Nobel laureates, high-ranking military personnel, astronauts, inventors, Silicon Valley leaders, and tenured university professors. For more information, visit hertzfoundation.org.
The new research saw scientists follow 100,000 participants in the UK Biobank national cohort.
Smartphones could soon be used to predict populations’ mortality rates, according to a press release by PLOS Digital Health.
Previous studies have used measures of physical fitness, including walk tests and self-reported walk pace, to predict individual mortality risk. Now scientists are taking it a step further.
A collaborative research team co-led by City University of Hong Kong (CityU) has developed a wearable tactile rendering system, which can mimic the sensation of touch with high spatial resolution and a rapid response rate.
The team demonstrated its application potential in a braille display, adding the sense of touch in the metaverse for functions such as virtual reality shopping and gaming, and potentially facilitating the work of astronauts, deep-sea divers and others who need to wear thick gloves.
Discovery of intriguing material behavior at small scales could reduce energy demands for computing.
As electronic devices become smaller and smaller, the materials that power them need to become thinner and thinner. Because of this, one of the key challenges scientists face in developing next-generation energy-efficient electronics is discovering materials that can maintain special electronic properties at an ultrathin size.
Advanced materials known as ferroelectrics present a promising solution to help lower the power consumed by the ultrasmall electronic devices found in cell phones and computers. Ferroelectrics—the electrical analog to ferromagnets—are a class of materials in which some of the atoms are arranged off-center, leading to a spontaneous internal electric charge or polarization. This internal polarization can reverse its direction when scientists expose the material to an external voltage. This offers great promise for ultralow-power microelectronics.
The Galaxy Quantum 3 has been revealed in South Korea, and it’s coming soon to SK Telecom’s network. The smartphone will be available for pre-order from April 22 to April 25, 2022. The first 10,000 buyers of the phone will get a Google Play gift card. Neither Samsung nor SK Telecom has revealed the price tag of the upcoming device.
The smartphone is based on the Galaxy M53 5G, which was silently revealed in Europe a few days ago. The Galaxy Quantum 3 features a 6.7-inch Super AMOLED Infinity-O display with Full HD+ resolution and a 120Hz refresh rate. It features a 108MP primary rear camera, an 8MP ultrawide camera, a 2MP macro camera, a 2MP depth sensor, and a 32MP front-facing camera. It can record 4K 30fps videos using both front and rear cameras.
Engineering and entrepreneurship — a match made in heaven!
Entrepreneurship is often glamorized, but in reality, it takes a lot of time and effort to make it. After all, there’s a reason why most startups fail. Additionally, managing a business requires specific skills, such as attention to detail and the ability to lead others. Having an analytical mindset is just as important.
Given these aspects, it’s not surprising that engineers make great entrepreneurs. Jeff Bezos, Bill Gates, Steve Wozniak, and Henry Ford all started their careers as engineers. However, not all engineers work in tech.
The innovative materials, known as thermoformable ceramics, were created by “accident” in a lab but had potential applications, including more effective and long-lasting heat sinks.
When Apple built crash detection into the iPhone 14, the company touted it as a life-saving feature. However, it’s causing some headaches for law enforcement, paramedics, and dispatchers who receive emergency calls informing them of a severe crash that never occurred.
According to The Wall Street Journal, a spate of these false positives have hit the Warren County Communications Center in Ohio since mid-September. In one such case, a King’s Island amusement park patron, 39-year-old Sarah White, rode the Mystic Timbers rollercoaster with her days-old iPhone 14 in her pocket. After the ride was over, her phone was flooded with notifications, missed calls, and voicemails from emergency services.