Toggle light / dark theme

High-energy #lasers are moving quickly from prototype to deployment for the #USArmy and #USNavy. We’ve helped make that happen.


A brief history of high-energy lasers.

The U.S. military has had electromagnetic spectrum weapons in mind since the 1960s. Throughout the 1980s, industry and military laid the groundwork for figuring out how to reach practical power levels, beam control and adaptive optics. The Department of Defense officially recognized lasers as a plausible future weapon in 1999, marking the beginning of formal research and development.

%{[ data-embed-type= image data-embed-id=6105d4fd38fdfbe3338b45e7 data-embed-element= span data-embed-size=320w data-embed-align= left data-embed-alt= Raytheon has installed the prototype High Energy Laser Weapon System (HELWS) aboard a Polaris MRZR all-terrain vehicle to defend military forces from enemy unmanned aircraft. data-embed-src= https://img.militaryaerospace.com/files/base/ebm/mae/image/2…max&w=1440 data-embed-caption= Raytheon has installed the prototype High Energy Laser Weapon System (HELWS) aboard a Polaris MRZR all-terrain vehicle to defend military forces from enemy unmanned aircraft. ]}%However, researchers did demonstrate limited-use lasers earlier than that, with the U.S. Defense Advanced Research Projects Agency (DARPA) firing a 100-kilowatt laser in 1968 and the Navy-ARPA Chemical Laser producing 250 kilowatts in 1975.

The company claims its High-Speed Vertical Take-Off and Landing aircraft could blend “the hover capability of a helicopter with the speed, range and survivability features of a fighter aircraft”. Such a system would be capable of “low-downwash hover” and “jet-like cruise speeds over 400kt [740km/h]”, the manufacturer says.

Bell’s conceptual renderings appear to use foldable proprotor technology that the company has disclosed in patent applications. The firm has explored aircraft that can take off vertically using tiltrotors, but then fly forward in cruise mode using wing-borne lift and thrust from jet engines, according to patent applications. Rotor blades would fold back to reduce drag during forward jet-powered flight.

One way such an aircraft might switch between high-speed cruise and VTOL mode is by relying on a “convertible engine”, a jet engine that switches between turboshaft and turbofan modes, according to patent filings. The Lockheed Martin F-35B uses a similar system, called the Rolls-Royce LiftSystem, to facilitate short take offs and vertical landings.

The US military’s AI experiments are growing particularly ambitious. The Drive reports that US Northern Command recently completed a string of tests for Global Information Dominance Experiments (GIDE), a combination of AI, cloud computing and sensors that could give the Pentagon the ability to predict events “days in advance,” according to Command leader General Glen VanHerck. It’s not as mystical as it sounds, but it could lead to a major change in military and government operations.

The machine learning-based system observes changes in raw, real-time data that hint at possible trouble. If satellite imagery shows signs that a rival nation’s submarine is preparing to leave port, for instance, the AI could flag that mobilization knowing the vessel will likely leave soon. Military analysts can take hours or even days to comb through this information — GIDE technology could send an alert within “seconds,” VanHerck said.

The most recent dry run, GIDE 3, was the most expansive yet. It saw all 11 US commands and the broader Defense Department use a mix of military and civilian sensors to address scenarios where “contested logistics” (such as communications in the Panama Canal) might pose a problem. The technology involved wasn’t strictly new, the General said, but the military “stitched everything together.”

What do you think?


The idea of using spaceships to travel from one point on the Earth’s surface to another has been around since at least the 1960s, but the cost and complexity of the idea have meant it’s been little more than a pipe dream.

In principle, the approach isn’t that different from the one used by intercontinental ballistic missiles. A rocket is used to blast the payload, be it a nuclear weapon or a passenger spaceship, on a big looping trajectory into space before re-entering the atmosphere on the other side of the planet.

The approach could make it possible to travel between continents in under an hour, and now Japan has outlined its vision for how to make the idea a reality. In a roadmap unveiled at an expert panel earlier this month, its science ministry put forward a two-phase plan it predicts could support a 5 trillion yen ($46 billion) market for spaceships departing from and arriving in Japan.

“Killer Robots” may seem far fetched, but as @AlexGatopoulos explains, the use of autonomous machines and other military applications of artificial intelligence are a growing reality of modern warfare.

Follow us on Twitter https://twitter.com/AJEnglish.
Find us on Facebook https://www.facebook.com/aljazeera.
Check our website: http://www.aljazeera.com/

#Aljazeeraenglish.
#Project_force.
#Al_Jazeera_Digital_Conten

But while science fiction provides military planners with a tantalizing glimpse of future weaponry, from exoskeletons to mind-machine interfaces, the genre is always about more than flashy new gadgets. It’s about anticipating the unforeseen ways in which these technologies could affect humans and society – and this extra context is often overlooked by the officials deciding which technologies to invest in for future conflicts.

Imagined worlds

Like my colleague David Seed, who has studied how fiction impacts on real-life threat assumptions about nuclear terrorism, I’m interested in how science fiction informs our sense of the future. This has given me the opportunity to work with members of the armed forces, using science fiction to query assumptions and generate novel visions of the future.

Russia has unveiled the Sukhoi Checkmate, a new fifth-generation fighter jet intended to supplement the Su-57 and conquer the international market.

A mockup of the aircraft was presented in a grand ceremony on the opening day of the MAKS airshow in Moscow on July 20, 2021.

“We have been working on the project for just slightly longer than one year. Such a fast development cycle was possible only with the help of advanced computer technologies and virtual testing,” Yuri Slyusar, CEO of United Aircraft Corporation (UAC), said at the event.

Getting blood to a wounded soldier could be the difference between life and death. A drone swarm is one way to make that happen in battle.


Blood is usually a finite quality on a battlefield. Battles can cause a number of injuries, from the minor to the critical. If a soldier can get the wound closed in time, they can staunch the loss, but keeping the patient alive may require an influx of new blood. As medics work to aid their comrades, they could receive help from an unusual source: delivery drones, bringing literal fresh blood to the battlefield.

A drone swarm capable of delivering blood was part of Autonomous Advance Force 4.0, an exercise by the United Kingdom’s armed forces in which Royal Marines Commandos trained with modern technology for future war. The July exercise took place in Cumbria and Dorset, with a release announced July 17.

The swarm consisted of six medium-heavy lift drones, Malloy Aeronautics TRV-150s. The TRV-150 can carry up to 140 lbs, at a range of up to 43 miles, with a maximum flight time of 36 minutes. Malloy drones got their start back in 2014 as a hoverbike concept, which was then proposed for the US military as a kind of ridden-drone scout. The US Army explored a large version of the drone as a “tactical resupply” vehicle in 2017. In TRV-150 form, the drone is an octocopter, with two rotors on each of four limbs.