Toggle light / dark theme

A crested bigscaleCredit: Karen Osborn/Smithsonian

“But what isn’t absorbed side-scatters into the layer, and it’s absorbed by the neighboring pigments that are all packed right up close to it,” Osborn told Wired. “And so what they’ve done is create this super-efficient, very-little-material system where they can basically build a light trap with just the pigment particles and nothing else.”

The result? Strange and terrifying deep-sea species, like the crested bigscale, fangtooth, and Pacific blackdragon, all of which appear in the deep sea as barely more than faint silhouettes.

Recent advancements in spintronics have enabled better prediction and control of spin currents by studying the magnetic properties and temperature effects on materials.

Spintronics is attracting significant interest as a promising alternative to conventional electronics, offering potential benefits such as lower power consumption, faster operation, non-volatility, and the possibility of introducing new functionalities.

Spintronics exploits the intrinsic spin of electrons, and fundamental to the field is controlling the flows of the spin degree of freedom, i.e., spin currents. Scientists are constantly looking at ways to create, remove, and control them for future applications.

(Inside Science) – Primitive “protocells” like those that evolved into the first living cells can form in bubbles on mineral surfaces that were plentiful on the early Earth, according to new research.

The researchers created artificial protocells that they believe may be similar to the protocells that may have formed on Earth about 3.8 billion years ago. The artificial protocells can absorb other small molecules by forming a barrier membrane around them — behavior that is strikingly like that of modern living cells when they absorb cellular fuel and other essential materials while blocking off harmful substances.

And the artificial protocells also exhibit a primitive form of “division,” where the outer membrane of a protocell ruptures and leaves behind several “daughter” protocells with the same capabilities.

The brick looks like concrete but avoids typical issues like water absorption and cracking.


Newly-introduced Lego-like bricks may make the construction process easier than ever.

A Canada-based sustainable startup, PLAEX Building Systems Inc., has created recycled plastic bricks. Named “Plaex-crete,” these blocks are lightweight, durable, and eco-friendly.

Plaex was founded by Dustin Bowers, and means PL-astic, A-ggregate, and EX-truder.

The results are “fantastic”, says Yan. They will “really inspire and stimulate the rest of the cold-molecules community”

Exotic phases

Molecular Bose–Einstein condensates could be used in myriad ways. One possibility, says Valtolina, is to create exotic supersolid phases, in which a rigid material flows without resistance. So far this has been achieved only in atomic gases with magnetic interactions — it could now be done in polar molecules, whose interactions are “way stronger”, he says.

Scientists at the Cavendish Laboratory have discovered spin coherence in Hexagonal Boron Nitride (hBN) under normal conditions, offering new prospects for quantum technology applications.

Cavendish Laboratory researchers have discovered that a single ‘atomic defect’ in a material known as Hexagonal Boron Nitride (hBN) maintains spin coherence at room temperature and can be manipulated using light.

Spin coherence refers to an electronic spin being capable of retaining quantum information over time. The discovery is significant because materials that can host quantum properties under ambient conditions are quite rare.