Menu

Blog

Archive for the ‘materials’ category: Page 287

Sep 15, 2015

Nanoscale Solar Cells Outperform Traditional Technology

Posted by in categories: computing, information science, materials, nanotechnology, solar power, sustainability

Scientists have designed a novel type of nanoscale solar cell. Initial studies and computer modelling predict these cells will outperform traditional solar panels, reach power conversion levels by over 40 percent.

Solar power cells work through the conversion of sunlight into electricity using photovoltaics. Here solar energy is converted into direct current. A photovoltaic system uses several solar panels; with each panel composed of a number of solar cells. This combines to create a system for the supply usable solar power.

To investigate what is possible in terms of solar power, the researchers have examined the Shockley-Queisser limit for different materials. This equation describes the maximum solar energy conversion efficiency achievable for a particular material, allowing different materials to be compared as candidates for power generation.

Read more

Sep 12, 2015

Ras Labs Is Testing Futuristic Muscle Material That Could Make Robots Feel More Human

Posted by in categories: biotech/medical, cyborgs, materials, robotics/AI, space

Synthetics startup Ras Labs is working with the International Space Station to test “smart materials” that contract like living tissue. These “electroactive” materials can expand, contract and conform to our limbs just like human muscles when a current moves through them – and they could be used to make robots move and feel more human to the touch.

Ras Labs co-founder Lenore Rasmussen accidentally stumbled upon the synthetic muscle material years ago while mixing chemicals in the lab at Virginia Tech. The experiment turned out to be with the wrong amount of ingredients, but it produced a blob of wobbly jelly that Rasmussen noticed contracted and expanded like muscles when she applied an electrical current.

It would be years later when Rasmussen’s cousin nearly lost his foot in a farming accident that she would start to employ that discovery to robotic limbs and space travel. The co-founder thought her cousin might lose his foot and started researching prosthetics.

Read more

Sep 12, 2015

How curly nanowires can absorb more light to power nanoscale electronic circuits

Posted by in categories: electronics, energy, materials, nanotechnology, solar power, sustainability

This illustration shows a prototype device comprising bare nanospring photodetectors placed on a glass substrate, with metal contacts to collect charges (credit: Tural Khudiyev and Mehmet Bayindir/Applied Optics)

Researchers from Bilkent University, Ankara, Turkey, have shown that twisting straight nanowires into springs can increase the amount of light the wires absorb by up to 23 percent. Absorbing more light is important because one application of nanowires is turning light into electricity, for example, to power tiny sensors instead of requiring batteries.

If nanowires are made from a semiconductor like silicon, light striking the wire will dislodge electrons from the crystal lattice, leaving positively charged “holes” behind. Both the electrons and the holes move through the material to generate electricity. The more light the wire absorbs; the more electricity it generates. (A device that converts light into electricity can function as either a solar cell or a photosensor.)

Read more

Sep 8, 2015

Lipid DNA origami may lead to advanced future nanomachines

Posted by in categories: biotech/medical, materials, nanotechnology

Using a double layer of lipids facilitates assembly of DNA origami nanostructures, bringing us one step closer to future DNA nanomachines, as in this artist’s impression (credit: Kyoto University’s Institute for Integrated Cell-Material Sciences)

Kyoto University scientists in Japan have developed a method for creating larger 2-D self-assembling DNA origami nanostructures.

Current DNA origami methods can create extremely small two- and three-dimensional shapes that could be used as construction material to build nanodevices, such as nanomotors, in the future for targeted drug delivery inside the body, for example. KurzweilAI recently covered advanced methods developed by Brookhaven National Laboratory and Arizona State University’s Biodesign Institute.

Read more

Sep 8, 2015

Nanotubes open new path toward quantum information technologies

Posted by in categories: computing, materials, nanotechnology, quantum physics, security

“Beyond implementation of quantum communication technologies, nanotube-based single photon sources could enable transformative quantum technologies including ultra-sensitive absorption measurements, sub-diffraction imaging, and linear quantum computing. The material has potential for photonic, plasmonic, optoelectronic, and quantum information science applications…”


In optical communication, critical information ranging from a credit card number to national security data is transmitted in streams of laser pulses. However, the information transmitted in this manner can be stolen by splitting out a few photons (the quantum of light) of the laser pulse. This type of eavesdropping could be prevented by encoding bits of information on quantum mechanical states (e.g. polarization state) of single photons. The ability to generate single photons on demand holds the key to realization of such a communication scheme.

By demonstrating that incorporation of pristine into a silicon dioxide (SiO2) matrix could lead to creation of solitary oxygen dopant state capable of fluctuation-free, room-temperature single , Los Alamos researchers revealed a new path toward on-demand single photon generation. Nature Nanotechnology published their findings.

Read more

Sep 2, 2015

NASA created a material that can heal itself in seconds—even from bullets

Posted by in categories: materials, space

It could save the lives of tomorrow’s astronauts.

Read more

Aug 31, 2015

‘Decorated’ graphene is a superconductor

Posted by in category: materials

Lithium-doped graphene turns out to be a conventional superconductor with a transition temperature of 5.9 K.


Depositing lithium on 2D material generates Cooper pairs.

Read more

Aug 29, 2015

David Hanson: We are close to building the first sentient robot

Posted by in categories: energy, materials, robotics/AI

Hanson would be unimpressed by my use of the word “it” to describe his robots, though. His latest creations, Han and Sophia, are “he” and “she” respectively. And Hanson believes that the latter model will become the “first sentient robot, the first one to achieve human-like consciousness.”

This is because Sophia is smaller in size – all of her mechanisms fit inside a smaller chassis. This is beneficial for two reasons: she costs less to make in terms of materials and it takes her less energy to make facial expressions and move around.

“Because of this, she can make more of a difference in the world,” Hanson explains. He adds:

Read more

Aug 28, 2015

Terminator-style ‘skin’ quickly repairs itself after a gunshot | New Scientist

Posted by in categories: habitats, materials, space

Other self-healing plastics exist, but they take much longer to repair themselves. The ability to instantly plug holes could be especially useful to protect structures in space, where flying objects can puncture spacecraft or orbiting habitats. The plastic could be incorporated into their walls, creating a seal if the atmosphere inside a vessel starts to leak out, putting astronauts at risk.

Other fabrics take a different approach: stopping projectiles altogether. A futuristic tissue combining human skin cells with spider silk can cushion a gunshot when fired at half speed. Pure graphene, which is made up of layers of carbon one-atom thick, is being investigated for use in bulletproof armour because it can handle blows better than steel.

Continue reading “Terminator-style 'skin' quickly repairs itself after a gunshot | New Scientist” »

Aug 28, 2015

Physics-Astronomy: NASA’s Warp-Drive Solution for Faster-Than-Light Space Travel

Posted by in categories: materials, space travel, time travel

Agreeing to state-of-the art theory, a warp drive might cut the travel time between stars from tens of thousands of years to only weeks or months. Harold G. White, a physicist and innovative propulsion engineer at NASA and other NASA engineers are working to regulate whether faster-than-light travel — warp drive — might soon be possible. The group is trying to some extent warp the course of a photon, altering the distance it travels in a definite area, and then detecting the change with a device called an interferometer.

In 1994, a Mexican physicist, Miguel Alcubierre, speculated that faster-than-light speeds were conceivable in a technique that did not deny Einstein by binding the growth and reduction of space itself. Under Dr. Alcubierre’s theory, a ship still couldn’t surpass light speed in a native region of space. But a theoretical thrust system he sketched out operated space-time by producing a so-called “warp bubble” that would inflate space on one side of a spacecraft and contract it on another.

Image source: With thanks to Shutterstock.com.

Continue reading “Physics-Astronomy: NASA's Warp-Drive Solution for Faster-Than-Light Space Travel” »