Menu

Blog

Archive for the ‘materials’ category: Page 283

Oct 24, 2015

Team hacks off-the-shelf 3-D printer towards rebuilding the heart

Posted by in categories: 3D printing, biotech/medical, engineering, materials

As of this month, over 4,000 Americans are on the waiting list to receive a heart transplant. With failing hearts, these patients have no other options; heart tissue, unlike other parts of the body, is unable to heal itself once it is damaged. Fortunately, recent work by a group at Carnegie Mellon could one day lead to a world in which transplants are no longer necessary to repair damaged organs.

“We’ve been able to take MRI images of coronary arteries and 3-D images of embryonic hearts and 3-D bioprint them with unprecedented resolution and quality out of very like collagens, alginates and fibrins,” said Adam Feinberg, an associate professor of Materials Science and Engineering and Biomedical Engineering at Carnegie Mellon University. Feinberg leads the Regenerative Biomaterials and Therapeutics Group, and the group’s study was published in the October 23 issue of the journal Science Advances. A demonstration of the technology can be seen below.

“As excellently demonstrated by Professor Feinberg’s work in bioprinting, our CMU researchers continue to develop novel solutions like this for problems that can have a transformational effect on society,” said Jim Garrett, Dean of Carnegie Mellon’s College of Engineering. “We should expect to see 3-D bioprinting continue to grow as an important tool for a large number of medical applications.”

Read more

Oct 22, 2015

New graphene based inks for high-speed manufacturing of printed electronics

Posted by in categories: electronics, materials, particle physics

A low-cost, high-speed method for printing graphene inks using a conventional roll-to-roll printing process, like that used to print newspapers and crisp packets, could open up a wide range of practical applications, including inexpensive printed electronics, intelligent packaging and disposable sensors.

Developed by researchers at the University of Cambridge in collaboration with Cambridge-based technology company Novalia, the method allows graphene and other electrically conducting materials to be added to conventional water-based inks and printed using typical commercial equipment, the first time that graphene has been used for printing on a large-scale commercial printing press at high speed.

Graphene is a two-dimensional sheet of carbon atoms, just one atom thick. Its flexibility, optical transparency and electrical conductivity make it suitable for a wide range of applications, including printed electronics. Although numerous laboratory prototypes have been demonstrated around the world, widespread commercial use of graphene is yet to be realised.

Read more

Oct 20, 2015

Graphennas: The Wonder Compound Meets Nano-Scale Wireless Communications

Posted by in categories: materials, nanotechnology

Graphene antennas have promised big improvements for tiny wireless technologies. A new study prepares “graphennas” for actual testing and development.

Read more

Oct 19, 2015

To infinity and beyond: Light goes infinitely fast with new on-chip material

Posted by in categories: computing, materials, nanotechnology

Electrons are so 20th century. In the 21st century, photonic devices, which use light to transport large amounts of information quickly, will enhance or even replace the electronic devices that are ubiquitous in our lives today. But there’s a step needed before optical connections can be integrated into telecommunications systems and computers: researchers need to make it easier to manipulate light at the nanoscale.

Researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have done just that, designing the first on-chip metamaterial with a refractive index of zero, meaning that the phase of can travel infinitely fast.

This new metamaterial was developed in the lab of Eric Mazur, the Balkanski Professor of Physics and Applied Physics and Area Dean for Applied Physics at SEAS, and is described in the journal Nature Photonics.

Read more

Oct 19, 2015

Graphene nano-coils are natural electromagnets

Posted by in categories: electronics, materials, nanotechnology

In the drive to miniaturize electronics, solenoids have become way too big, say Rice University scientists who discovered the essential component can be scaled down to nano-size with macro-scale performance.

The secret is in a spiral form of atom-thin graphene that, remarkably, can be found in nature, according to Rice theoretical physicist Boris Yakobson and his colleagues.

“Usually, we determine the characteristics for materials we think might be possible to make, but this time we’re looking at a configuration that already exists,” Yakobson said. “These spirals, or screw dislocations, form naturally in graphite during its growth, even in common coal.”

Continue reading “Graphene nano-coils are natural electromagnets” »

Oct 16, 2015

Experts Warn UN Panel About the Dangers of Artificial Superintelligence

Posted by in categories: materials, robotics/AI, security

https://www.youtube.com/watch?v=W9N_Fsbngh8

During a recent United Nations meeting about emerging global risks, political representatives from around the world were warned about the threats posed by artificial intelligence and other future technologies.

The event, organized by Georgia’s UN representatives and the UN Interregional Crime and Justice Research Institute (UNICRI), was set up to foster discussion about the national and international security risks posed by new technologies, including chemical, biological, radiological, and nuclear (CBRN) materials.

Continue reading “Experts Warn UN Panel About the Dangers of Artificial Superintelligence” »

Oct 15, 2015

Billions in Change — Official Film

Posted by in categories: complex systems, energy, ethics, hacking, health, materials, sustainability, water

https://www.youtube.com/watch?v=YY7f1t9y9a0

“The world is facing some huge problems. There’s a lot of talk about how to solve them. But talk doesn’t reduce pollution, or grow food, or heal the sick. That takes doing. This film is the story about a group of doers, the elegantly simple inventions they have made to change the lives of billions of people, and the unconventional billionaire spearheading the project.”

Oct 14, 2015

Watch: This is the world’s lightest metal

Posted by in category: materials

A few years ago, researchers created the world’s lightest metal for Boeing, and now the airline has shown it off for the first time in this new video. Called microlattice, the material is 100 times lighter than styrofoam but is as rigid as metal, which means that it has some pretty exciting applications — not limited to being able to balance on top of a dandelion.

Microlattice was inspired by the structure of our bones, which are very rigid on the outside but mostly hollow on the inside, which means they can’t be easily crushed, but are lightweight enough for us to carry around all day. The new Boeing metal mimics this, and despite its rigid exterior, it has a 3D open-cellular polymer structure, which means its structure is 99.99 percent air.

Continue reading “Watch: This is the world’s lightest metal” »

Oct 14, 2015

Nick Bostrom sets out threats from future technologies at UN meeting

Posted by in categories: education, materials, robotics/AI, security

Professor Nick Bostrom briefed political representatives from around the world on the national and international security risks posed by artificial intelligence and other future technologies at a UN event last week.

Professor Bostrom, Director of the Future of Humanity Institute, Oxford Martin School, was invited to speak at a special side event examining the challenges posed by chemical, biological, radiological and nuclear (CBRN) materials and weapons, held during the UN’s 2015 General Assembly meeting.

The event was organised by Georgia’s UN representatives, in collaboration with the United Nations Interregional Crime and Justice Research Institute (UNICRI), with the aim of understanding the implications of new technologies, ensuring responsible development and mitigating against misuse.

Read more

Oct 9, 2015

Scientists paint quantum electronics with beams of light

Posted by in categories: computing, electronics, materials, quantum physics

A team of scientists from the University of Chicago and the Pennsylvania State University have accidentally discovered a new way of using light to draw and erase quantum-mechanical circuits in a unique class of materials called topological insulators.

In contrast to using advanced nanofabrication facilities based on chemical processing of materials, this flexible technique allows for rewritable ‘optical fabrication’ of devices. This finding is likely to spawn new developments in emerging technologies such as low-power electronics based on the spin of electrons or ultrafast quantum computers.

The research is published today in the American Association for the Advancement of Science’s new online journal Science Advances, where it is featured on the journal’s front page.

Read more