Menu

Blog

Archive for the ‘internet’ category: Page 166

Jan 10, 2021

FCC grants permission for polar launch of Starlink satellites

Posted by in categories: internet, satellites

WASHINGTON — The Federal Communications Commission will allow SpaceX to launch 10 Starlink satellites into polar orbit on an upcoming mission, but deferred a decision on a much broader modification of SpaceX’s license.

In an order published Jan. 8, the FCC granted SpaceX permission to launch 10 Starlink satellites into a 560-kilometer orbit with an inclination of 97.6 degrees. Those satellites will launch on a Falcon 9 no earlier than Jan. 14 as part of Transporter-1, a dedicated smallsat rideshare mission.

SpaceX had been lobbying the FCC for weeks for permission to launch Starlink satellites into a polar orbital plane as the FCC considers a modification of the company’s license to lower the orbits of satellites originally authorized for higher altitudes. That included a Nov. 17 request to launch 58 satellites into a single polar orbital plane, citing “an opportunity for a polar launch in December” that it did not identify.

Jan 10, 2021

World’s Fastest, Most Powerful Neuromorphic Processor for AI Unveiled

Posted by in categories: internet, robotics/AI

RELATED: HUAWEI LAUNCHES WORLD’S MOST POWERFUL AI PROCESSOR

Optical micro-combs.

The invention could revolutionize neural networks and neuromorphic processing in general. “This breakthrough was achieved with ‘optical micro-combs’, as was our world-record internet data speed reported in May 2020,” said in a statement Swinburne’s Professor David Moss.

Jan 7, 2021

The moon will soon have better 4G than many places on Earth

Posted by in categories: internet, space travel

Can I sign up to go to the moon? It might be easier than trying to get a better 4G here on planet Earth.

Jan 5, 2021

Multifunctional lens sensor system could revolutionize smart contacts

Posted by in categories: biotech/medical, computing, health, internet, sustainability

The enormous impact of the recent COVID-19 pandemic, together with other diseases or chronic health risks, has significantly prompted the development and application of bioelectronics and medical devices for real-time monitoring and diagnosing health status. Among all these devices, smart contact lenses attract extensive interests due to their capability of directly monitoring physiological and ambient information. Smart contact lenses equipped with high sensitivity sensors would open the possibility of a non-invasive method to continuously detect biomarkers in tears. They could also be equipped with application-specific integrated circuit chips to further enrich their functionality to obtain, process and transmit physiological properties, manage illnesses and health risks, and finally promote health and wellbeing. Despite significant efforts, previous demonstrations still need multistep integration processes with limited detection sensitivity and mechanical biocompatibility.

Recently, researchers from the University of Surrey, National Physical Laboratory (NPL), Harvard University, University of Science and Technology of China, Zhejiang University Ningbo Research Institute, etc. have developed a multifunctional ultrathin contact sensor system. The sensor systems contain a photodetector for receiving optical information, imaging and vision assistance, a temperature sensor for diagnosing potential corneal disease, and a glucose sensor for monitoring glucose level directly from the tear fluid.

Dr. Yunlong Zhao, Lecturer in Energy Storage and Bioelectronics at the Advanced Technology Institute (ATI), University of Surrey and Senior Research Scientist at the UK National Physical Laboratory (NPL), who led this research stated, “These results provide not only a novel and easy-to-make method for manufacturing advanced smart contact lenses but also a novel insight of designing other multifunctional electronics for Internet of Things, , etc.” Dr. Zhao added, “our ultrathin transistors-based serpentine mesh sensor system and fabrication strategy allow for further incorporation of other functional components, such as electrode array for electrophysiology, antennas for wireless communication, and the power modules, e.g. thin-film batteries and enzymatic biofuel cell for future in vivo exploration and practical application. Our research team at ATI, University of Surrey and NPL are currently working on these fields.”

Jan 3, 2021

The internet of thoughts is coming

Posted by in categories: biotech/medical, internet, nanotechnology, neuroscience, robotics/AI

Before the century is out, advances in nanotechnology, nanomedicine, AI, and computation will result in the development of a “Human Brain/Cloud Interface” (B/CI), that connects neurons and synapses in the brain to vast cloud-computing networks in real time.

That’s the prediction of a large international team of neurosurgeons, roboticists, and nanotechnologists, writing in the journal Frontiers in Neuroscience.

A Human Brain/Cloud Interface, sometimes dubbed the “internet of thoughts”, theoretically links brains and cloud-based data storage through the intercession of nanobots positioned at strategically useful neuronal junctions.

Jan 1, 2021

Quantum Teleportation Was Just Achieved With 90% Accuracy Over a 44km Distance

Posted by in categories: internet, quantum physics

Scientists are edging closer to making a super-secure, super-fast quantum internet possible: they’ve now been able to ‘teleport’ high-fidelity quantum information over a total distance of 44 kilometres (27 miles).

Both data fidelity and transfer distance are crucial when it comes to building a real, working quantum internet, and making progress in either of these areas is cause for celebration for those building our next-generation communications network.

Continue reading “Quantum Teleportation Was Just Achieved With 90% Accuracy Over a 44km Distance” »

Jan 1, 2021

The unhackable computers that could revolutionize the future

Posted by in categories: computing, internet, particle physics, quantum physics

While many institutions are developing quantum computers, making a quantum internet requires a way to transfer the information between computers. This is accomplished by a phenomenon called quantum teleportation, in which two atoms separated by large distances are made to act as if they are identical.


Don Lincoln writes about recent research that has brought us closer to actualizing the goal of a quantum internet, giving us both hope and fear about what it could mean for the future.

Dec 30, 2020

Alphabet’s Project Taara Provides Internet Access Using Beams of Light

Posted by in category: internet

Sub-Saharan Africa can have high-speed internet access without needing to lay any cables.

Dec 30, 2020

Looking Back At 2020 — Tesla/SpaceX/Starlink/5G/mRNA + more

Posted by in categories: biotech/medical, internet, space travel

Are you fed up with all the negativity?

Between Tesla, SpaceX (Starship & Starlink), 5G, mRNA vaccines and more, 2020 has been an eventful year full of breakthroughs all set to make our lives better, and ushering in a sci-fi future quicker than ever…so I brought them all together in one video to celebrate the great people working tirelessly to make our future better.

Continue reading “Looking Back At 2020 — Tesla/SpaceX/Starlink/5G/mRNA + more” »

Dec 29, 2020

Researchers achieve sustained, high-fidelity quantum teleportation

Posted by in categories: computing, internet, particle physics, quantum physics

A viable quantum internet—a network in which information stored in qubits is shared over long distances through entanglement—would transform the fields of data storage, precision sensing and computing, ushering in a new era of communication.

This month, scientists at Fermi National Accelerator Laboratory—a U.S. Department of Energy national laboratory affiliated with the University of Chicago—along with partners at five institutions took a significant step in the direction of realizing a .

In a paper published in PRX Quantum, the team presents for the first time a demonstration of a sustained, long-distance teleportation of qubits made of photons (particles of light) with fidelity greater than 90%.