Toggle light / dark theme

During my pursuits, I’ve come across an increasing number of exciting nontraditional routes for funding scientific research. The efforts of Adam Marblestone and Benjamin Reinhardt have been particularly instrumental in stimulating this ecosystem, but many other great people have contributed as well. These new funding routes are a welcome relief since many of the most innovative and far-reaching projects are not especially suited for receiving governmental NIH, NSF, etc. funding. If you would like to find a more comprehensive list of such alternative funding sources, you should check out https://arbesman.net/overedge/. My own list (below) consists of funding sources that stand out to me as particularly promising. I hope you find this useful and feel free to reach out if you have any questions!

PDF version

Amaranthe Foundation https://amaranth.foundation/bottlenecks-of-aging “We outline initiatives which, if executed, could meaningfully accelerate the advancement of aging science and other life-extending technologies. The resulting document is a philanthropic menu, for which Amaranth is seeking both talent to execute on and co-funders. If you are a founder, researcher, or philanthropist interested in executing or co-sponsoring one or several of the projects or proposals below, please reach out to us”

A breakthrough plasmonic catalyst, stable in air, revolutionizes acetylene semi-hydrogenation, marking a significant advance in sustainable catalysis.

In a significant breakthrough, Prof. Polshettiwar’s group at TIFR, Mumbai has developed a novel “Plasmonic Reduction Catalyst Stable in Air,” defying the common instability of reduction catalysts in the presence of air. The catalyst merges platinum-doped ruthenium clusters, with ‘plasmonic black gold’. This black gold efficiently harvests visible light and generates numerous hot spots due to plasmonic coupling, enhancing its catalytic performance.

Superior Performance in Semi-Hydrogenation.

“Soilless biofortification of vegetables has opened the door to the potential for adapting vegetable production to specific dietary requirements,” said Dr. Massimiliano Renna.


Can microgreen be customized based on dietary and medical needs? This is what a recent study published in the Journal of the Science of Food and Agriculture hopes to address as a collaborative team of Italian researchers investigated the potential for customizing microgreens via soilless growing methods designed to suit specific dietary needs based on medical concerns. This study holds the potential to help scientists and patients better understand the available nutritional options, specifically for medical reasons.

“Propelled by an ever-growing awareness of the importance of following dietary recommendations, interest in personalized nutrition is on the rise. Soilless biofortification of vegetables has opened the door to the potential for adapting vegetable production to specific dietary requirements,” said Dr. Massimiliano Renna, who is a professor of agricultural and environmental science at the University of Bari Aldo Moro and a co-author on the study.

For the study, the researchers focused on growing customized microgreens that could meet the needs of individuals who suffer from an iodine deficiency or need less potassium. Iodine deficiency impacts approximately two billion people around the world and reduced potassium is required for individuals suffering from chronic kidney disease, which impacts more than 800 million people around the world, as well. In the end, the researchers were able to grow microgreens in iodine solution that resulted in up to 14 times increase in iodine levels, plus they successfully reduced potassium levels by an average of 45 percent.

Connected workers benefit from enhanced collaboration through digital communication platforms. This is particularly impactful in scenarios where quality issues arise and require immediate attention. Seamless communication channels allow for swift coordination between different departments, including production, quality control, and maintenance, facilitating quick resolutions to quality challenges and minimizing the impact on the final product.

The Future of Manufacturing Excellence

The connected worker is proving to be a catalyst for transformative change in the realm of quality control within manufacturing. As technology continues to advance, the integration of IoT, predictive maintenance, augmented reality, and data analytics will further empower workers to uphold and elevate product quality standards. Manufacturers embracing these advancements are not only ensuring the production of high-quality goods but are also positioning themselves at the forefront of Industry 4.0, where connectivity and innovation converge to redefine the future of manufacturing excellence.

We are witnessing a professional revolution where the boundaries between man and machine slowly fade away, giving rise to innovative collaboration.

Photo by Mateusz Kitka (Pexels)

As Artificial Intelligence (AI) continues to advance by leaps and bounds, it’s impossible to overlook the profound transformations that this technological revolution is imprinting on the professions of the future. A paradigm shift is underway, redefining not only the nature of work but also how we conceptualize collaboration between humans and machines.

As creator of the ETER9 Project (2), I perceive AI not only as a disruptive force but also as a powerful tool to shape a more efficient, innovative, and inclusive future. As we move forward in this new world, it’s crucial for each of us to contribute to building a professional environment that celebrates the interplay between humanity and technology, where the potential of AI is realized for the benefit of all.