Menu

Blog

Archive for the ‘information science’ category: Page 258

Apr 2, 2018

Defense Advanced Research Projects Agency

Posted by in categories: information science, robotics/AI

I might bump my post for an armed low flying mini UAV. Seeing as this what they are tip toeing around now.


The focus of this swarm sprint is on enabling improved swarm autonomy through enhancements of swarm platforms and/or autonomy elements, with the operational backdrop of utilizing a diverse swarm of 50 air and ground robots to isolate an urban objective within an area of two square city blocks over a mission duration of 15 to 30 minutes. Swarm Sprinters will leverage existing or develop new hardware components, swarm algorithms, and/or swarm primitives to enable novel capabilities that specifically showcase the advantages of a swarm when leveraging and operating in complex urban environments.

Continue reading “Defense Advanced Research Projects Agency” »

Apr 2, 2018

Expedition Crew Waits for Dragon and Studies Life Science

Posted by in categories: biotech/medical, health, information science, satellites, science

The Falcon 9 rocket carrying the SpaceX Dragon cargo craft stands atop its launch pad counting down to a 4:30 p.m. EDT liftoff today to the International Space Station. The Expedition 55 crew is preparing for its arrival on Wednesday while continuing a variety of advanced space research aboard the orbital lab today.

NASA’s Kennedy Space Center in Florida is hosting the 14th launch of a SpaceX commercial cargo mission to the space station. Astronauts Norishige Kanai and Scott Tingle are practicing the maneuvers and procedures necessary to capture Dragon with 2 Canadarm2 when it arrives at 7 a.m. Wednesday morning. Their fellow flight engineers Drew Feustel and Ricky Arnold joined them later in the afternoon to review the cargo they’ll transfer back and forth after they open the hatches to Dragon.

Feustel spent the better part of his day testing algorithms on a pair of tiny internal satellites that could be used to detect spacecraft positions and velocities. Arnold strapped himself into an exercise cycle for an exertion in space study then collected his blood samples for stowage and later analysis.

Continue reading “Expedition Crew Waits for Dragon and Studies Life Science” »

Mar 30, 2018

OFFSET “Sprinters” to Pursue State-of-the-art Solutions for Second Swarm Sprint

Posted by in categories: information science, robotics/AI, transportation, virtual reality

DARPA’s OFFensive Swarm-Enabled Tactics (OFFSET) program envisions future small-unit infantry forces using small unmanned aircraft systems (UASs) and/or small unmanned ground systems (UGSs) in swarms of 250 robots or more to accomplish diverse missions in complex urban environments. By leveraging and combining emerging technologies in swarm autonomy and human-swarm teaming, the program seeks to enable rapid development and deployment of breakthrough swarm capabilities.

To continue the rapid pace and further advance the technology development of OFFSET, DARPA is soliciting proposals for the second “swarm sprint.” Each of the five core “sprints” focuses on one of the key thrust areas: Swarm Tactics, Swarm Autonomy, Human-Swarm Team, Virtual Environment, and Physical Testbed. This second group of “Swarm Sprinters” will have the opportunity to work with one or both of the OFFSET Swarm Systems Integrator teams to develop and assess tactics as well as algorithms to enhance autonomy.

Read more

Mar 29, 2018

The brain learns completely differently than we’ve assumed, new learning theory says

Posted by in categories: biological, information science, neuroscience

(credit: Getty)

A revolutionary new theory contradicts a fundamental assumption in neuroscience about how the brain learns. According to researchers at Bar-Ilan University in Israel led by Prof. Ido Kanter, the theory promises to transform our understanding of brain dysfunction and may lead to advanced, faster, deep-learning algorithms.

A biological schema of an output neuron, comprising a neuron’s soma (body, shown as gray circle, top) with two roots of dendritic trees (light-blue arrows), splitting into many dendritic branches (light-blue lines). The signals arriving from the connecting input neurons (gray circles, bottom) travel via their axons (red lines) and their many branches until terminating with the synapses (green stars). There, the signals connect with dendrites (some synapse branches travel to other neurons), which then connect to the soma. (credit: Shira Sardi et al./Sci. Rep)

Read more

Mar 25, 2018

The ground truth about metadata and community detection in networks

Posted by in category: information science

Across many scientific domains, there is a common need to automatically extract a simplified view or coarse-graining of how a complex system’s components interact. This general task is called community detection in networks and is analogous to searching for clusters in independent vector data. It is common to evaluate the performance of community detection algorithms by their ability to find so-called ground truth communities. This works well in synthetic networks with planted communities because these networks’ links are formed explicitly based on those known communities. However, there are no planted communities in real-world networks. Instead, it is standard practice to treat some observed discrete-valued node attributes, or metadata, as ground truth. We show that metadata are not the same as ground truth and that treating them as such induces severe theoretical and practical problems. We prove that no algorithm can uniquely solve community detection, and we prove a general No Free Lunch theorem for community detection, which implies that there can be no algorithm that is optimal for all possible community detection tasks. However, community detection remains a powerful tool and node metadata still have value, so a careful exploration of their relationship with network structure can yield insights of genuine worth. We illustrate this point by introducing two statistical techniques that can quantify the relationship between metadata and community structure for a broad class of models. We demonstrate these techniques using both synthetic and real-world networks, and for multiple types of metadata and community structures.

Read more

Mar 23, 2018

Artist Hides Secret Code to $10,000 Worth of Cryptocurrencies in Lego Artworks

Posted by in categories: bitcoin, cryptocurrencies, encryption, information science, space

It has no inherent value and causes observers to rotate between feelings of fascination and anger. We’re talking about cryptocurrency, but also art. In a new series, artist Andy Bauch is bringing the two subjects together with works that use abstract patterns constructed in Lego bricks. Each piece visually represents the private key to a crypto-wallet, and anyone can steal that digital cash—if you can decode them.

Bauch first started playing around with cryptocurrencies in 2013 and told us in an interview that he considers himself an enthusiast but not a “rabid promoter” of the technology. “I wasn’t smart enough to buy enough to have fuck-you money,” he said. In 2016, he started to integrate his Bitcoin interest with his art practice.

His latest series of work, New Money, opens at LA’s Castelli Art Space on Friday. Bauch says that each piece in the series “is a secret key to various types of cryptocurrency.” He bought various amounts of Bitcoin, Litecoin, and other alt-coins in 2016 and put them in different digital wallets. Each wallet is encrypted with a private key that consists of a string of letters and numbers. That key was initially fed into an algorithm to generate a pattern. Then Bauch tweaked the algorithm here and there to get it to spit out an image that appealed to him. After finalizing the works, he’s rigorously tested them in reverse to ensure that they do, indeed, give you the right private key when processed through his formula.

Continue reading “Artist Hides Secret Code to $10,000 Worth of Cryptocurrencies in Lego Artworks” »

Mar 23, 2018

There’s an algorithm to simulate our brains. Too bad no computer can run it

Posted by in categories: information science, robotics/AI

An international team of researchers recently unveiled an algorithm that can be scaled to simulate the human brain’s entire neural network. But there’s a slight catch.

Read more

Mar 22, 2018

Powerful New Algorithm Is a Big Step Towards Whole-Brain Simulation

Posted by in categories: computing, information science, neuroscience

The renowned physicist Dr. Richard Feynman once said: “What I cannot create, I do not understand. Know how to solve every problem that has been solved.”

An increasingly influential subfield of neuroscience has taken Feynman’s words to heart. To theoretical neuroscientists, the key to understanding how intelligence works is to recreate it inside a computer. Neuron by neuron, these whizzes hope to reconstruct the neural processes that lead to a thought, a memory, or a feeling.

With a digital brain in place, scientists can test out current theories of cognition or explore the parameters that lead to a malfunctioning mind. As philosopher Dr. Nick Bostrom at the University of Oxford argues, simulating the human mind is perhaps one of the most promising (if laborious) ways to recreate—and surpass—human-level ingenuity.

Continue reading “Powerful New Algorithm Is a Big Step Towards Whole-Brain Simulation” »

Mar 22, 2018

New algorithm will allow for simulating neural connections of entire brain on future exascale supercomputers

Posted by in categories: information science, mathematics, neuroscience, supercomputing

Amazing.


(credit: iStock)

Continue reading “New algorithm will allow for simulating neural connections of entire brain on future exascale supercomputers” »

Mar 20, 2018

Scientists aim to use lasers to turn light into matter

Posted by in categories: information science, particle physics

Scientists at Imperial College London are attempting to use powerful lasers turn light into matter, potentially proving the 84-year-old theory known as the Breit-Wheeler process. According to this theory, it is technically possible to turn light into matter by smashing two photons to create a positron and an electron. While previous efforts to achieve this feat have required added high-energy particles, the Imperial scientists believe they have discovered a method that does not need additional energy to function. “This would be a pure demonstration of Einstein’s famous equation that relates energy and mass: E=mc2, which tells us how much energy is produced when matter is turned to energy,” explained Imperial Professor Steven Rose. “What we are doing is the same but backwards: turning photon energy into mass, i.e. m=E/c2.”

Read more