Toggle light / dark theme

Circa 2012


Quantum computational algorithms exploit quantum mechanics to solve problems exponentially faster than the best classical algorithms1,2,3. Shor’s quantum algorithm4 for fast number factoring is a key example and the prime motivator in the international effort to realize a quantum computer5. However, due to the substantial resource requirement, to date there have been only four small-scale demonstrations6,7,8,9. Here, we address this resource demand and demonstrate a scalable version of Shor’s algorithm in which the n-qubit control register is replaced by a single qubit that is recycled n times: the total number of qubits is one-third of that required in the standard protocol10,11. Encoding the work register in higher-dimensional states, we implement a two-photon compiled algorithm to factor N = 21. The algorithmic output is distinguishable from noise, in contrast to previous demonstrations. These results point to larger-scale implementations of Shor’s algorithm by harnessing scalable resource reductions applicable to all physical architectures.

In the week of April 12–18, the top 10 search terms on Amazon.com were: toilet paper, face mask, hand sanitizer, paper towels, Lysol spray, Clorox wipes, mask, Lysol, masks for germ protection, and N95 mask. People weren’t just searching, they were buying too —and in bulk. The majority of people looking for masks ended up buying the new Amazon #1 Best Seller, “Face Mask, Pack of 50”.

When covid-19 hit, we started buying things we’d never bought before. The shift was sudden: the mainstays of Amazon’s top ten—phone cases, phone chargers, Lego—were knocked off the charts in just a few days. Nozzle, a London-based consultancy specializing in algorithmic advertising for Amazon sellers, captured the rapid change in this simple graph.

It took less than a week at the end of February for the top 10 Amazon search terms in multiple countries to fill up with products related to covid-19. You can track the spread of the pandemic by what we shopped for: the items peaked first in Italy, followed by Spain, France, Canada, and the US. The UK and Germany lag slightly behind. “It’s an incredible transition in the space of five days,” says Rael Cline, Nozzle’s CEO. The ripple effects have been seen across retail supply chains.

The U.S. space agency National Aeronautics Space Administration (NASA), European Space Agency (ESA), and Japan Aerospace Exploration Agency (JAXA) are inviting coders, entrepreneurs, scientists, designers, storytellers, makers, builders, artists, and technologists to participate in a virtual hackathon May 30–31 dedicated to putting open data to work in developing solutions to issues related to the COVID-19 pandemic.

During the global Space Apps COVID-19 Challenge, participants from around the world will create virtual teams that – during a 48-hour period – will use Earth observation data to propose solutions to COVID-19-related challenges ranging from studying the coronavirus that causes COVID-19 and its spread to the impact the disease is having on the Earth system. Registration for this challenge opens in mid-May.

“There’s a tremendous need for our collective ingenuity right now,” said Thomas Zurbuchen, associate administrator for NASA’s Science Mission Directorate. “I can’t imagine a more worthy focus than COVID-19 on which to direct the energy and enthusiasm from around the world with the Space Apps Challenge that always generates such amazing solutions.”

Rice University researchers have discovered a hidden symmetry in the chemical kinetic equations scientists have long used to model and study many of the chemical processes essential for life.

The find has implications for drug design, genetics and biomedical research and is described in a study published on April 21, 2020, in the Proceedings of the National Academy of Sciences. To illustrate the biological ramifications, study co-authors Oleg Igoshin, Anatoly Kolomeisky and Joel Mallory of Rice’s Center for Theoretical Biological Physics (CTBP) used three wide-ranging examples: protein folding, enzyme catalysis and motor protein efficiency.

Igoshin said the symmetry “wasn’t that hard to prove, but no one noticed it before.”

Circa 2018


After 10 years, Prof. Raimar Wulkenhaar from the University of Münster’s Mathematical Institute and his colleague Dr. Erik Panzer from the University of Oxford have solved a mathematical equation which was considered to be unsolvable. The equation is to be used to find answers to questions posed by elementary particle physics. In this interview with Christina Heimken, Wulkenhaar looks back on the challenges encountered in looking for the formula for a solution and he explains why the work is not yet finished.

You worked on the solution to the equation for 10 years. What made this equation so difficult to solve?

It’s a non-linear integral equation with two variables. Such an equation is so complex that you do actually think there can’t possibly be any formula for a solution. Two variables alone are a challenge in themselves, and there are no established approaches for finding a solution for non-linear integral equations. Nevertheless, again and again during those 10 years there were glimmers of hope and as a result, and despite all the difficulties, I thought finding an explicit formula for a solution – expressed through known functions – was actually possible.

Some big M&A is afoot in Israel in the world of smart transportation. According to multiple reports and sources that have contacted TechCrunch, chip giant Intel is in the final stages of a deal to acquire Moovit, a startup that applies AI and big data analytics to track traffic and provide transit recommendations to some 800 million people globally. The deal is expected to close in the coming days at a price believed to be in the region of $1 billion.

We have contacted Nir Erez, the founder and CEO of Moovit, as well as Intel spokespeople for a comment on the reports and will update this story as we learn more. For now, Moovit’s spokesperson has not denied the reports and what we have been told directly.

“At this time we have no comment, but if anything changes I’ll definitely let you know,” Moovit’s spokesperson.

The triumph of Google’s AlphaGo in 2016 against Go world champion Lee Sedol by 4:1 caused quite the stir that reached far beyond the Go community, with over a hundred million people watching while the match was taking place. It was a milestone in the development of AI: Go had withstood the attempts of computer scientists to build algorithms that could play at a human level for a long time. And now an artificial mind had been built, dominating someone that had dedicated thousands of hours of practice to hone his craft with relative ease.

This was already quite the achievement, but then AlphaGoZero came along, and fed AlphaGo some of its own medicine: it won against AlphaGo with a margin of 100:0 only a year after Lee Sedol’s defeat. This was even more spectacular, and for more than the obvious reasons. AlphaGoZero was not only an improved version of AlphaGo. Where AlphaGo had trained with the help of expert games played by the best human Go players, AlphaGoZero had started literally from zero, working the intricacies of the game out without any supervision.

Given nothing more than the rules of the game and how to win, it had locked itself in its virtual room and played against itself for only 34 hours. It didn’t combine historically humanity’s built up an understanding of the principles and aesthetics of the game with the unquestionably superior numerical power of computers, but it emerged, just by itself, as the dominant Go force of the known universe.