Toggle light / dark theme

Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Discount Links:
At-Home Metabolomics: https://www.iollo.com?ref=michael-lustgarten.
Use Code: CONQUERAGING At Checkout.

NAD+ Quantification: https://www.jinfiniti.com/intracellular-nad-test/
Use Code: ConquerAging At Checkout.

Epigenetic Testing: https://trudiagnostic.com/?irclickid=U-s3Ii2r7xyIU-LSYLyQdQ6…M0&irgwc=1

In April of this year, Spanish athlete Beatriz Flamini emerged into the light after a 500-day stay in a cave. Her descent underground is probably the longest undertaken by a long stretch. Flamini says she lost all sense of time on the 65th day. But can she really be sure it was the 65th day? By way of comparison, in 1962 France’s Michel Siffre surfaced from the Scarasson chasm in Italy after spending what he thought was 33 days there. In fact, he spent 58 days underground.

How can isolated human beings keep regular track of time, even when they’re disconnected from their surrounding environment? Quite simply, because biological rhythms are at the heart of life, regulating it all the way from the up to that of the entire body. These include not only our sleep/, but also body temperature, hormones, metabolism and the cardiovascular system, to name but a few.

And these rhythms have many repercussions, not least in terms of public health. Indeed, a number of diseases are episodic—for example, asthma is more severe at night, while cardiovascular accidents are more frequent in the morning. Another example is shift work, which disconnects people from their environment. It may be associated with an increased risk of cancers in workers, prompting the WHO to label it as a probable carcinogen.

Antipsychotic drugs treat incredibly vulnerable patients. Maintaining a treatment regimen is difficult for many patients, but not taking the medication is associated with a higher risk of poor health outcomes. These drugs are also very powerful with strong side effects, and blood tests are often used to calibrate a patient’s dosage and confirm that they are taking the recommended dose.

However, blood tests are invasive and potentially uncomfortable. Scientists have now discovered a way to test the levels of common in the sweat from patients’ fingerprints, offering a quicker, more comfortable, and more convenient alternative to blood draws for patient monitoring.

“Our test offers patients a quick and dignified way of showing commitment to antipsychotic treatment,” said Katherine Longman of the University of Surrey, first author of the study in Frontiers in Chemistry. “This non-invasive approach can also be adapted to fit other therapeutic regimes.”

(WJW) – A nationwide recall of tainted eye drops is growing after bacterial and fungal contamination were found in sample tests, according to the Food and Drug Administration (FDA).

Dr. Berne’s Whole Health Products is now voluntarily recalling all lots of the company’s MSM Drops 5% Solution, 15% Solution, Organic Castor Oil Eye Drops and MSM Mist 15% Solution.

Quantum computing is on the verge of catapulting the digital revolution to new heights.

Turbocharged processing holds the promise of instantaneously diagnosing health ailments and providing rapid development of new medicines; greatly speeding up response time in AI systems for such time-sensitive operations as autonomous driving and space travel; optimizing traffic control in congested cities; helping aircraft better navigate extreme turbulence; speeding up weather forecasting that better prepares localities facing potential disaster, and optimizing supply chain systems for more efficient delivery times and cost savings.

But we’re not there yet. One of the greatest obstacles facing quantum operations is error-correction.

Britain’s state-run national health service will be the first in the world to offer an injection that treats cancer to hundreds of patients in England which could cut treatment times by up to three quarters.

Following approval from the Medicines and Healthcare products Regulatory Agency (MHRA), NHS England said on Tuesday (Aug 29) hundreds of eligible patients treated with the immunotherapy, atezolizumab, were set to have “under the skin” injection, which will free up more time for cancer teams.

“This approval will not only allow us to deliver convenient and faster care for our patients, but will enable our teams to treat more patients throughout the day,” Dr Alexander Martin, a consultant oncologist at West Suffolk NHS Foundation Trust said.

The article titled “Evaluation of OVX836: A Promising Universal Influenza Vaccine Candidate” published in The Lancet presents a comprehensive assessment of OVX836, a novel influenza vaccine candidate targeting the nucleoprotein of influenza A virus. Authored by a team of researchers led by IL-R at CEVAC Clinical Unit and Laboratory, the study aims to investigate the safety, immunogenicity, and potential efficacy of OVX836 at different doses, shedding light on its potential as a universal influenza vaccine.

Influenza remains a significant global health concern, with seasonal epidemics and occasional pandemics causing substantial morbidity and mortality. Current influenza vaccines primarily focus on the viral surface protein hemagglutinin, but their efficacy is limited by antigenic variation and the emergence of new strains. Current vaccines are developed for the season based on what strains were prominent in the last season. Additionally, vaccine efficacies can vary from season to season. OVX836 takes a different approach by targeting the highly conserved nucleoprotein, which plays a crucial role in the influenza virus life cycle.

OVX836 elicited a robust immune response, characterized by significant increases in nucleoprotein-specific CD4 and CD8 T-cell responses, as well as the production of anti-nucleoprotein IgG antibodies. The magnitude of these immune responses displayed a dose-dependent relationship, with higher doses of OVX836 leading to stronger immune reactions. Of particular interest was the induction of a CD8 T-cell response, a rare achievement for influenza vaccines and a crucial component of comprehensive immune protection.

Inhibiting a protein on the surface of immune cells could offer new strategies for treating severe asthma, Cleveland Clinic researchers found.

Researchers discovered a new way a protein called MCEMP1 contributes to severe inflammation in the airway and lungs. The discovery, published in Nature Communications, provides critical information for developing therapeutic interventions to treat long-term lung conditions, including asthma, on a biological level.

The study was conducted in a lab led by Jae Jung, PhD, chair of the Cancer Biology Department, director of the Infection Biology program, and director of the Sheikha Fatima bint Mubarak Global Center for Pathogen & Human Health Research.

I’m excited to share my new opinion article for Newsweek. It advocates for transforming America from a military-industrial complex into a science-industrial complex! Give it a read!


America spends 45 percent of its discretionary federal spending on defense and wars, while around us, the world burns in ways that have nothing to do with fighting or the military. Global warming has escalated into an enormous crisis. A fifth of everyone we know will die from heart disease. And an opioid crisis is reducing the average lifespans of Americans for the first time in decades. There’s plenty of tragedy, fear, and hardship all around us, but it has nothing to do with the need to make more bombs. It does, however, have to do with science.

It seems obvious America should do something different than spend so much of its tax dollars on defense. We should consider halving that money, and directing it to science, transforming America from a military-industrial complex into a science-industrial complex. Despite science and technological progress being broadly responsible for raising the standard of living around the world over the last 50 years, America spends only 3 percent of its GDP ($205 billion) on science and medical research across the federal government. Notably, this is dramatically less than the $877 billion the U.S. will spend on defense this year.

The famous designation of the term military-industrial complex comes from former President Dwight D. Eisenhower in his farewell address, where he warned America and its economy could descend into being a conflict-driven nation. Over 60 years after his speech, we have become just that. A Brown University study found that since 2001, the U.S. has spent $5.9 trillion on wars in the Middle East and Asia. For contrast, the 2023 budget for the National Institutes of Health (NIH) is a paltry $49 billion.

A new study led by researchers at Karolinska Institutet in Sweden has examined how T cells of the immune system are affected by weightlessness. The results, which are published in the journal Science Advances, could explain why astronauts’ T cells become less active and less effective at fighting infection.

The next steps in the exploration of space are human missions to the moon and to Mars. Space is an extremely hostile environment that poses threats to human health. One such threat is changes to the that occur in astronauts while in space and that persist after their return to Earth. This immune deficiency can leave them more vulnerable to infection and lead to the reactivation of latent viruses in the body.

“If astronauts are to be able to undergo safe space missions, we need to understand how their immune systems are affected and try to find ways to counter harmful changes to it,” says study leader Lisa Westerberg, principal researcher at the Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet. “We’ve now been able to investigate what happens to T cells, which are a key component of the immune system, when exposed to weightless conditions.”