Toggle light / dark theme

CHOP researchers established the feasibility of an artificial womb called the “Biobag” to nurture a premature lamb in 2017.

The US Food and Drug Administration (FDA) will hold a meeting of independent advisors on September 19–20. The meeting’s agenda is to discuss the viability of clinical trials using artificial womb technology to improve the survival and health of extremely preterm newborns.

Reportedly, during this meeting, regulators and experts will delve into ethical concerns and evaluate various crucial aspects, including the potential steps and design of human trials for this technology.

Children whose mothers had a higher exposure to certain phthalates during pregnancy tend to show smaller total gray matter in their brains at age 10. This is one of the main conclusions of a study led by the NYU Grossman School of Medicine and the Barcelona Institute for Global Health (ISGlobal), and published in Molecular Psychiatry.

The study also found that to plasticizers during pregnancy is associated with lower child IQ at age 14, which confirmed the results of two previous study on the topic. Moreover, the research team observed that this relationship between exposure to certain phthalates and lower child IQ is partially influenced by total gray matter volumes. In other words: exposure to plasticizers before birth could lead to smaller total gray matter in childhood, which in turn could be related to a lower IQ.

Finally, the results showed an association between gestational exposure to plasticizers and smaller white matter volumes in girls.

Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Discount Links:
NAD+ Quantification: https://www.jinfiniti.com/intracellular-nad-test/
Use Code: ConquerAging At Checkout.

Oral Microbiome: https://www.bristlehealth.com/?ref=michaellustgarten.
Enter Code: ConquerAging.

At-Home Metabolomics: https://www.iollo.com?ref=michael-lustgarten.

Scientists from the University of Texas at Dallas have identified a previously unknown “housekeeping” process in kidney cells that ejects unwanted content, resulting in cells that rejuvenate themselves and remain functioning and healthy.

This unique self-renewal method, distinct from known regeneration processes in other body tissues, sheds light on how the kidneys can maintain their health throughout one’s life in the absence of injury or illness. The team detailed their findings in a study recently published in Nature Nanotechnology.

Unlike the liver and skin, where cells divide to create new daughter cells and regenerate the organ, cells in the proximal tubules of the kidney are mitotically quiescent — they do not divide to create new cells. In cases of a mild injury or disease, kidney cells do have limited repair capabilities, and stem cells in the kidney can form new kidney cells, but only up to a point, said Dr. Jie Zheng, professor of chemistry and biochemistry in the School of Natural Sciences and Mathematics and co-corresponding author of the study.

A Texas A&M University professor and a team of pharmacology researchers are spearheading advances in the use of medical cannabinoids for epilepsy and seizure disorders.

A team led by Dr. D. Samba Reddy, a Regents Professor in the Department of Neuroscience and Experimental Therapeutics at the Texas A&M University School of Medicine, has made progress in determining efficacy, safety and new applications of cannabinoid therapeutics. Reddy’s work establishes a foundation for tailored and effective epilepsy treatments, offering hope to those facing its challenges.

The team’s research on epilepsy has resulted in the publication of five key papers featured in the May 2023 issue of the journal Experimental Neurology.

“The medical cannabis research originated from the patient families and advocates in Colorado who have witnessed the positive effects of medical cannabis products,” said Reddy, who is a founding director of the Texas A&M Health Institute of Pharmacology and Neurotherapeutics.


NIH-funded study suggests need to reevaluate opioid addiction treatment recommendations in the era of fentanyl.

Individuals with opioid use disorder who were prescribed a lower buprenorphine dose were 20% more likely to discontinue treatment than those on a higher dose, according to a study of patients prescribed buprenorphine in Rhode Island from 2016 to 2020, as fentanyl became widely available. The study, published today in JAMA Network Open, was supported by the National Institute on Drug Abuse (NIDA), part of the National Institutes of Health, and conducted by researchers at Brown University, Providence, Rhode Island; NIDA and the Rhode Island Department of Health.

Among patients newly initiating buprenorphine treatment for opioid use disorder, 59% of those prescribed the target daily dose of 16 milligrams recommended by the U.S. Food and Drug Administration and 53% of those prescribed the higher 24 mg daily dose discontinued treatment within 180 days. A statistical analysis that allowed for multivariable comparison of these two dose groups showed patients prescribed the recommended dose (16 mg) were significantly more likely to discontinue treatment over 180 days compared to those prescribed 24 mg.

At Science4Seniors we strive to take rigorous research published in Scientific Journals and make the core information accessible to all. If you want to support us please like and follow us on Facebook. In recent years, the intersection of medical science and technology has unfurled fascinating possibilities, especially in diagnostics. Among the many marvels we’ve been introduced to, medical artificial intelligence (AI) is reshaping how we detect and diagnose a plethora of health conditions. One area that stands out significantly in this transformation is the potential of AI in the analysis of retinal images.

The Department of Defense has teamed up with Google to build an AI-powered microscope that can help doctors identify cancer.

The tool is called an Augmented Reality Microscope, and it will usually cost health systems between $90,000 to $100,000.

Experts believe the ARM will help support doctors in smaller labs as they battle with workforce shortages and mounting caseloads.


The pair ran the case through the special microscope, and Zafar was right. In seconds, the AI flagged the exact part of the tumor that Zafar believed was more aggressive. After the machine backed him up, Zafar said his colleague was convinced.

Our hope is for COVID-19 to never repeat itself,’ said the new program’s executive director.

A program run by a Canadian university is seeking to improve global health care for the most vulnerable by examining how artificial intelligence (AI) can enhance readiness for infectious disease epidemics in the Global South.

This is according to a report by CTV News published on Wednesday.


Interesting Engineering is a cutting edge, leading community designed for all lovers of engineering, technology and science.