Menu

Blog

Archive for the ‘health’ category: Page 79

Jul 30, 2023

Magnetic and acoustic levitation to protect bioprint heart models against radiation

Posted by in categories: bioprinting, biotech/medical, health, space travel

Reducing reliance of aninmal experimentation. 🐀

According to the team, this new unparalleled technology facilitates the precise manipulation of biological materials, enabling the creation of highly sophisticated and realistic organoids that closely mimic the complexity of the corresponding human organs.


The cutting-edge magnetic and acoustic levitation will bioprint heart models to improve protection against radiation both in space and on Earth.

Continue reading “Magnetic and acoustic levitation to protect bioprint heart models against radiation” »

Jul 30, 2023

How Much Junk Food Is Bad For Health?

Posted by in categories: biotech/medical, food, genetics, health

Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Discount Links:
At-Home Metabolomics: https://www.iollo.com?ref=michael-lustgarten.
Use Code: CONQUERAGING At Checkout.

Continue reading “How Much Junk Food Is Bad For Health?” »

Jul 29, 2023

Unearthing Our Past, Predicting Our Future: Scientists Discover the Genes That Shape Our Bones

Posted by in categories: biotech/medical, genetics, health, robotics/AI

This groundbreaking study, which was published as the cover article in the journal Science, not only sheds light on our evolutionary history but also paves the way for a future where physicians could more accurately assess a patient’s likelihood of suffering from ailments like back pain or arthritis later in life.

“Our research is a powerful demonstration of the impact of AI in medicine, particularly when it comes to analyzing and quantifying imaging data, as well as integrating this information with health records and genetics rapidly and at large scale,” said Vagheesh Narasimhan, an assistant professor of integrative biology as well as statistics and data science, who led the multidisciplinary team of researchers, to provide the genetic map of skeletal proportions.

Jul 29, 2023

Early drinkers might have reduced connectivity in the cognitive control network of the brain

Posted by in categories: health, neuroscience

A new neuroimaging study has found that individuals who consumed their first alcoholic drink before the age of 18 had weaker connections in the brain’s cognitive control network compared those who consumed their first alcoholic drink after the age of 18. This suggests that starting to drink alcohol at a young age might make this brain network less effective. The study was published in Psychiatry Research: Neuroimaging.

Although the adverse effects of alcohol consumption and related long-term health risks are well known, it is estimated that 30% of youth in the United States use alcohol by the eighth grade. 62% of adolescents report drinking their first alcoholic drink by the time they graduate from high school, around 18 years of age.

Studies have found that individuals who start using alcohol earlier are more likely to develop alcohol-related problems later in life. Individuals who drink their first alcoholic drink earlier are also more likely to get drunk for the first time at an earlier age. They are also more likely to participate in binge drinking i.e., to consume more than 5 standard drinks for men or more than 4 for women on a single occasion.

Jul 29, 2023

MU researcher receives $3 million grant to use gene editing for investigating the building blocks of disease

Posted by in categories: bioengineering, biotech/medical, health

In a new study funded by a $3 million grant from the National Institutes of Health (NIH), University of Missouri researcher Kiho Lee, an associate professor in the College of Agriculture, Food and Natural Resources, will use gene editing to investigate the building blocks of disease.

Jul 29, 2023

Hepatitis B and C—A Closer Look at NIAID Research to Accelerate Elimination

Posted by in categories: biotech/medical, health

Viral hepatitis is an inflammatory liver disease caused by infection with any of the known hepatitis viruses—A, B, C, D, and E. Most of the global viral hepatitis burden is from hepatitis B and C, which affect 354 million people and result in 1.1 million deaths annually. The Centers for Disease Control and Prevention estimates that in 2020 there were 14,000 and 50,300 new acute infections of hepatitis B and C in the United States, respectively, while at least 880,000 people in the country were living with chronic (long-term) hepatitis B and 2.4 million people had chronic hepatitis C. About half of those with viral hepatitis are unaware of their infection. Chronic and persistent inflammation from the disease can lead to liver failure, cirrhosis, or liver cancer. Viral hepatitis affects all ages and there are pronounced inequities in disease outcomes in the United States. Hepatitis B and C disproportionately affect people living with HIV, and HIV increases the rate of complications and death in people with viral hepatitis.

On this World Hepatitis Day, the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health, shares a snapshot of its investments in basic (laboratory), preclinical (laboratory/animal), and clinical (human) research to improve screening, prevention and treatment for hepatitis B and C. Scientists in the Hepatic Pathogenesis and Structural Virology sections of NIAID’s Laboratory of Infectious Diseases conduct basic and translational research to better understand hepatitis B and C disease progression, clarify the role of hepatitis viruses in liver cancer, and inform discovery of new vaccines, medicine and technologies. Both NIAID’s Division of AIDS (DAIDS) and the Division of Microbiology and Infectious Disease (DMID) support scientific programs focused on hepatitis B and C research and curative strategies, reflecting the widespread impact of viral hepatitis and the urgent need for safe and effective interventions.

Finding a hepatitis B cure.

Jul 29, 2023

Bioengineered Probiotics: Synthetic Biology Can Provide Live Cell Therapeutics for the Treatment of Foodborne Diseases

Posted by in categories: bioengineering, biotech/medical, economics, food, health

The rising prevalence of antibiotic resistant microbial pathogens presents an ominous health and economic challenge to modern society. The discovery and large-scale development of antibiotic drugs in previous decades was transformational, providing cheap, effective treatment for what would previously have been a lethal infection. As microbial strains resistant to many or even all antibiotic drug treatments have evolved, there is an urgent need for new drugs or antimicrobial treatments to control these pathogens. The ability to sequence and mine the genomes of an increasing number of microbial strains from previously unexplored environments has the potential to identify new natural product antibiotic biosynthesis pathways. This coupled with the power of synthetic biology to generate new production chassis, biosensors and “weaponized” live cell therapeutics may provide new means to combat the rapidly evolving threat of drug resistant microbial pathogens. This review focuses on the application of synthetic biology to construct probiotic strains that have been endowed with functionalities allowing them to identify, compete with and in some cases kill microbial pathogens as well as stimulate host immunity. Weaponized probiotics may have the greatest potential for use against pathogens that infect the gastrointestinal tract: Vibrio cholerae, Staphylococcus aureus, Clostridium perfringens and Clostridioides difficile. The potential benefits of engineered probiotics are highlighted along with the challenges that must still be met before these intriguing and exciting new therapeutic tools can be widely deployed.

The discovery and application of antibiotic drugs is among the most significant accomplishments of medical science. Alexander Fleming’s discovery of penicillin (Fleming, 1929) and subsequent discovery and development of multiple classes of natural product antibiotics have been transformational to modern society. These compounds have yielded cheap and effective treatments for diseases caused by common bacterial infections that would previously have proven fatal. The advent of effective antibiotic drugs has made it possible to survive complex surgical procedures like open heart surgery and organ transplants and extended the average human life-span (Riley, 2005; Kaviani et al., 2020). The benefits of readily available antibiotic drugs have extended into agriculture and aquaculture, making it possible to increase productivity of farmed animals (Park et al., 1994; Patel et al., 2020).

Jul 28, 2023

The #1 way to strengthen your mind is to use your body | Wendy Suzuki

Posted by in categories: chemistry, health, neuroscience

Exercise gives your brain a “bubble bath of neurochemicals,” says Wendy Suzuki, a professor of neural science.

Up next, Forensic accountant explains why fraud thrives on Wall Street.
â–ș https://youtu.be/GHKyDYtKGEg.

Continue reading “The #1 way to strengthen your mind is to use your body | Wendy Suzuki” »

Jul 28, 2023

Swallowing Disorders

Posted by in categories: food, health

Difficulty swallowing (dysphagia) affects your quality of life and your health. The ability to safely swallow is vital for adequate nutrition and hydration, and it prevents foods and liquids from entering your lungs, where they can cause pneumonia.

Jul 27, 2023

Stanford Medicine researchers take part in HuBMAP, showing what healthy human tissue looks like

Posted by in categories: biotech/medical, health

More often than not, studies of human biology are conducted when the body is under duress from infection or disease. Now, as part of a larger effort to delineate what “healthy” looks like, two Stanford Medicine teams have unfurled detailed molecular maps of healthy human intestinal and placental tissues. The maps, which capture cell types, cell quantity and other cellular nuances, are just two of a collection of maps that will establish a cellular baseline for the majority of the human body, including where cells in certain tissues congregate, how tissues develop during pregnancy and how cell-to-cell interactions drive human biology.

The studies, which published in Nature on July 19, are part of a larger effort spearheaded by the Human Biomolecular Atlas Program — called HuBMAP — funded by the National Institutes of Health. It aims to fill gaps in our knowledge of how the human body works when it’s in tip-top shape. Dozens of teams from the United States and Europe contribute to the HuBMAP consortium.

Continue reading “Stanford Medicine researchers take part in HuBMAP, showing what healthy human tissue looks like” »

Page 79 of 422First7677787980818283Last