Menu

Blog

Archive for the ‘habitats’ category: Page 140

Apr 2, 2011

A (Relatively) Brief Introduction to The Principles of Economics & Evolution: A Survival Guide for the Inhabitants of Small Islands, Including the Inhabitants of the Small Island of Earth

Posted by in categories: asteroid/comet impacts, biological, complex systems, cosmology, defense, economics, existential risks, geopolitics, habitats, human trajectories, lifeboat, military, philosophy, sustainability

(NOTE: Selecting the “Switch to White” button on the upper right-hand corner of the screen may ease reading this text).

“Who are you?” A simple question sometimes requires a complex answer. When a Homeric hero is asked who he is.., his answer consists of more than just his name; he provides a list of his ancestors. The history of his family is an essential constituent of his identity. When the city of Aphrodisias… decided to honor a prominent citizen with a public funeral…, the decree in his honor identified him in the following manner:

Hermogenes, son of Hephaistion, the so-called Theodotos, one of the first and most illustrious citizens, a man who has as his ancestors men among the greatest and among those who built together the community and have lived in virtue, love of glory, many promises of benefactions, and the most beautiful deeds for the fatherland; a man who has been himself good and virtuous, a lover of the fatherland, a constructor, a benefactor of the polis, and a savior.
– Angelos Chaniotis, In Search of an Identity: European Discourses and Ancient Paradigms, 2010

I realize many may not have the time to read all of this post — let alone the treatise it introduces — so for those with just a few minutes to spare, consider abandoning the remainder of this introduction and spending a few moments with a brief narrative which distills the very essence of the problem at hand: On the Origin of Mass Extinctions: Darwin’s Nontrivial Error.

Continue reading “A (Relatively) Brief Introduction to The Principles of Economics & Evolution: A Survival Guide for the Inhabitants of Small Islands, Including the Inhabitants of the Small Island of Earth” »

Nov 11, 2010

What’s Your Dream for the Future of California?

Posted by in categories: education, events, existential risks, futurism, habitats, human trajectories, open access, policy, sustainability


California Dreams Video 1 from IFTF on Vimeo.

INSTITUTE FOR THE FUTURE ANNOUNCES CALIFORNIA DREAMS:
A CALL FOR ENTRIES ON IMAGINING LIFE IN CALIFORNIA IN 2020

Put yourself in the future and show us what a day in your life looks like. Will California keep growing, start conserving, reinvent itself, or collapse? How are you living in this new world? Anyone can enter,anyone can vote; anyone can change the future of California!

California has always been a frontier—a place of change and innovation, reinventing itself time and again. The question is, can California do it again? Today the state is facing some of its toughest challenges. Launching today, IFTF’s California Dreams is a competition with an urgent challenge to recruit citizen visions of the future of California—ideas for what it will be like to live in the state in the next decade—to start creating a new California dream.

Continue reading “What's Your Dream for the Future of California?” »

Sep 19, 2010

New Plant Paradigms (Part X: Power Plants, Greening the Desert, Phyto-Terraforming, and Recommendations)

Posted by in categories: biological, biotech/medical, futurism, habitats

(End of series. For previous topics please see parts I-IX)

Power plants. Trees could do a lot, as we have seen — and they’re solar powered, too. Once trees can suck metals from the soil and grow useful, shaped objects like copper wire, a few more levels of genetic engineering could enable the tree to use this copper wire to deliver electricity. Since a tree is already, now, a solar energy converter, we can build on that by having the tree grow tissues that convert energy into electricity. Electric eels can already do that, producing enough of a jolt to be lethal to humans. Even ordinary fish produce small amounts of electricity to create electric fields in the water around them. Any object nearby disrupts the field, enabling the fish to tell that something is near, even in total darkness. We may never be able to plug something into a swimming fish but we can already make batteries out of potatoes. So why not trees that grow into electricity providers all by themselves? It would be great to be able to plug your electrical devices into a tree (or at least a socket in your house that is connected to the tree). Then you would no longer need to connect to the grid, purchase solar panels, or install a windmill. You would, however, need to keep your trees healthy and vigorous! Tree care specialists would become a highly employable occupation.

Greening the desert. The Sahara and various other less notorious but still very dry deserts around the world have plenty of sand and rocks. But they don’t have much greenery. The main problem is lack of water. Vast swaths of the Sahara, for example, are plant free. It’s just too dry. However this problem is solvable! Cacti and other desert plants could potentially extract water from the air. Plants already extract carbon dioxide molecules from the air. Even very dry air contains considerable water vapor, so why not extract water molecules too. Indeed, plants already transport water molecules in the ground into their roots, so is it really such a big step to do the same from the air? Tillandsia (air plant) species can already pull in water with their leaves, but it has to be rain or other liquid water. Creating plants that can extract gaseous water vapor from the air in a harsh desert environment would require sophisticated genetic engineering, or a leap for mother nature, but it is still only the first step. Plants get nutrients out of the soil by absorbing fluid that has dissolved them, so dry soil would be a problem even for a plant that contained plenty of water pulled from the air. Another level of genetic engineering or natural evolution would be required to enable them to secrete fluid out of their roots to moisten chunks of soil to dissolve its minerals, and reabsorb the now nutritious, mineral-laden liquid back into their roots.

Once this difficult task is accomplished, whether by natural evolution in the distant future or genetic engineering sooner, things will be different in the desert. Canopies of vegetation that hide the ground will be possible. Thus shaded and sheltered, the ground will be able to support a much richer ecosystem of creatures and maybe even humans than is currently the case in deserts. One of Earth’s harshest environments would be tamed.

Continue reading “New Plant Paradigms (Part X: Power Plants, Greening the Desert, Phyto-Terraforming, and Recommendations)” »

Apr 14, 2010

Technology Readiness Levels for Non-rocket Space Launch

Posted by in categories: asteroid/comet impacts, engineering, habitats, human trajectories, space

An obvious next step in the effort to dramatically lower the cost of access to low Earth orbit is to explore non-rocket options. A wide variety of ideas have been proposed, but it’s difficult to meaningfully compare them and to get a sense of what’s actually on the technology horizon. The best way to quantitatively assess these technologies is by using Technology Readiness Levels (TRLs). TRLs are used by NASA, the United States military, and many other agencies and companies worldwide. Typically there are nine levels, ranging from speculations on basic principles to full flight-tested status.

The system NASA uses can be summed up as follows:

TRL 1 Basic principles observed and reported
TRL 2 Technology concept and/or application formulated
TRL 3 Analytical and experimental critical function and/or characteristic proof-of concept
TRL 4 Component and/or breadboard validation in laboratory environment
TRL 5 Component and/or breadboard validation in relevant environment
TRL 6 System/subsystem model or prototype demonstration in a relevant environment (ground or space)
TRL 7 System prototype demonstration in a space environment
TRL 8 Actual system completed and “flight qualified” through test and demonstration (ground or space)
TRL 9 Actual system “flight proven” through successful mission operations.

Progress towards achieving a non-rocket space launch will be facilitated by popular understanding of each of these proposed technologies and their readiness level. This can serve to coordinate more work into those methods that are the most promising. I think it is important to distinguish between options with acceleration levels within the range human safety and those that would be useful only for cargo. Below I have listed some non-rocket space launch methods and my assessment of their technology readiness levels.

Continue reading “Technology Readiness Levels for Non-rocket Space Launch” »

Jul 1, 2009

Electron Beam Free Form Fabrication process — progress toward self sustaining structures

Posted by in categories: complex systems, engineering, habitats, lifeboat, space, sustainability

For any assembly or structure, whether an isolated bunker or a self sustaining space colony, to be able to function perpetually, the ability to manufacture any of the parts necessary to maintain, or expand, the structure is an obvious necessity. Conventional metal working techniques, consisting of forming, cutting, casting or welding present extreme difficulties in size and complexity that would be difficult to integrate into a self sustaining structure.

Forming requires heavy high powered machinery to press metals into their final desired shapes. Cutting procedures, such as milling and lathing, also require large, heavy, complex machinery, but also waste tremendous amounts of material as large bulk shapes are cut away emerging the final part. Casting metal parts requires a complex mold construction and preparation procedures, not only does a negative mold of the final part need to be constructed, but the mold needs to be prepared, usually by coating in ceramic slurries, before the molten metal is applied. Unless thousands of parts are required, the molds are a waste of energy, resources, and effort. Joining is a flexible process, and usually achieved by welding or brazing and works by melting metal between two fixed parts in order to join them — but the fixed parts present the same manufacturing problems.

Ideally then, in any self sustaining structure, metal parts should be constructed only in the final desired shape but without the need of a mold and very limited need for cutting or joining. In a salient progressive step toward this necessary goal, NASA demonstrates the innovative Electron Beam Free Forming Fabrication (http://www.aeronautics.nasa.gov/electron_beam.htm) Process. A rapid metal fabrication process essentially it “prints” a complex three dimensional object by feeding a molten wire through a computer controlled gun, building the part, layer by layer, and adding metal only where you desire it. It requires no molds and little or no tooling, and material properties are similar to other forming techniques. The complexity of the part is limited only by the imagination of the programmer and the dexterity of the wire feed and heating device.

Continue reading “Electron Beam Free Form Fabrication process — progress toward self sustaining structures” »

Jun 16, 2009

Gulches — freedom lifeboats

Posted by in categories: education, geopolitics, habitats, lifeboat, nuclear weapons

Jim Davies of Strike the Root writes about Galt’s Gulch and some gulch-like projects. These appeal to him because of the exponential trends in government power and abuse of power. He writes, in part,

“We have the serious opportunity in our hands right now of terminating the era of government absolutely, and so of removing from the human race the threat of ever more brutal tyranny ending only with WMD annihilation–while opening up vistas of peaceful prosperity and technological progress which even a realist like myself cannot find words to describe. ”

http://www.strike-the-root.com/91/davies/davies11.html

Avoiding those terrible events is what building our Lifeboat is all about. Got Lifeboat?

Feb 24, 2009

I Don’t Want To Live in a Post-Apocalyptic World

Posted by in categories: asteroid/comet impacts, defense, existential risks, futurism, habitats, robotics/AI, space

Image from The Road film, based on Cormac McCarthy's book

How About You?
I’ve just finished reading Cormac McCarthy’s The Road at the recommendation of my cousin Marie-Eve. The setting is a post-apocalyptic world and the main protagonists — a father and son — basically spend all their time looking for food and shelter, and try to avoid being robbed or killed by other starving survivors.

It very much makes me not want to live in such a world. Everybody would probably agree. Yet few people actually do much to reduce the chances of of such a scenario happening. In fact, it’s worse than that; few people even seriously entertain the possibility that such a scenario could happen.

People don’t think about such things because they are unpleasant and they don’t feel they can do anything about them, but if more people actually did think about them, we could do something. We might never be completely safe, but we could significantly improve our odds over the status quo.

Continue reading “I Don't Want To Live in a Post-Apocalyptic World” »

Jan 15, 2009

What should be at the center of the U.S. stimulus package

Posted by in categories: existential risks, geopolitics, habitats, lifeboat, space, sustainability

The projected size of Barack Obama’s “stimulus package” is heading north, from hundreds of billions of dollars into the trillions. And the Obama program comes, of course, on top of the various Bush administration bailouts and commitments, estimated to run as high as $8.5 trillion.

Will this money be put to good use? That’s an important question for the new President, and an even more important question for America. The metric for all government spending ultimately comes down to a single query: What did you get for it?

If such spending was worth it, that’s great. If the country gets victory in war, or victory over economic catastrophe, well, obviously, it was worthwhile. The national interest should never be sacrificed on the altar of a balanced budget.

So let’s hope we get the most value possible for all that money–and all that red ink. Let’s hope we get a more prosperous nation and a cleaner earth. Let’s also hope we get a more secure population and a clear, strategic margin of safety for the United States. Yet how do we do all that?

Continue reading “What should be at the center of the U.S. stimulus package” »

Oct 26, 2008

Refuges and bunkers

Posted by in categories: asteroid/comet impacts, cybercrime/malcode, defense, existential risks, habitats, lifeboat, sustainability, treaties

Here I would like to suggest readers a quotation from my book “Structure of the global catastrophe” (http://www.scribd.com/doc/7529531/-) there I discuss problems of preventing catastrophes.

Refuges and bunkers

Different sort of a refuge and bunkers can increase chances of survival of the mankind in case of global catastrophe, however the situation with them is not simple. Separate independent refuges can exist for decades, but the more they are independent and long-time, the more efforts are necessary for their preparation in advance. Refuges should provide ability for the mankind to the further self-reproduction. Hence, they should contain not only enough of capable to reproduction people, but also a stock of technologies which will allow to survive and breed in territory which is planned to render habitable after an exit from the refuge. The more this territory will be polluted, the higher level of technologies is required for a reliable survival.
Very big bunker will appear capable to continue in itself development of technologies and after catastrophe. However in this case it will be vulnerable to the same risks, as all terrestrial civilisation — there can be internal terrorists, AI, nanorobots, leaks etc. If the bunker is not capable to continue itself development of technologies it, more likely, is doomed to degradation.
Further, the bunker can be or «civilizational», that is keep the majority of cultural and technological achievements of the civilisation, or “specific”, that is keep only human life. For “long” bunkers (which are prepared for long-term stay) the problem of formation and education of children and risks of degradation will rise. The bunker can or live for the account of the resources which have been saved up before catastrophe, or be engaged in own manufacture. In last case it will be simply underground civilisation on the infected planet.
The more a bunker is constructed on modern technologies and independent cultural and technically, the higher ammount of people should live there (but in the future it will be not so: the bunker on the basis of advanced nanotechnology can be even at all deserted, — only with the frozen human embryos). To provide simple reproduction by means of training to the basic human trades, thousand people are required. These people should be selected and be in the bunker before final catastrophe, and, it is desirable, on a constant basis. However it is improbable, that thousand intellectually and physically excellent people would want to sit in the bunker “just in case”. In this case they can be in the bunker in two or three changes and receive for it a salary. (Now in Russia begins experiment «Mars 500» in which 6 humans will be in completely independent — on water, to meal, air — for 500 days. Possibly, it is the best result which we now have. In the early nineties in the USA there was also a project «Biosphera-2» in which people should live two years on full self-maintenance under a dome in desert. The project has ended with partial failure as oxygen level in system began to fall because of unforeseen reproduction of microorganisms and insects.) As additional risk for bunkers it is necessary to note fact of psychology of the small groups closed in one premise widely known on the Antarctic expeditions — namely, the increase of animosities fraught with destructive actions, reducing survival rate.
The bunker can be either unique, or one of many. In the first case it is vulnerable to different catastrophes, and in the second is possible struggle between different bunkers for the resources which have remained outside. Or is possible war continuation if catastrophe has resulted from war.
The bunker, most likely, will be either underground, or in the sea, or in space. But the space bunker too can be underground of asteroids or the Moon. For the space bunker it will be more difficult to use the rests of resources on the Earth. The bunker can be completely isolated, or to allow “excursion” in the external hostile environment.
As model of the sea bunker can serve the nuclear submarine possessing high reserve, autonomy, manoeuvrability and stability to negative influences. Besides, it can easily be cooled at ocean (the problem of cooling of the underground closed bunkers is not simple), to extract from it water, oxygen and even food. Besides, already there are ready boats and technical decisions. The boat is capable to sustain shock and radiating influence. However the resource of independent swimming of modern submarines makes at the best 1 year, and in them there is no place for storage of stocks.
Modern space station ISS could support independently life of several humans within approximately year though there are problems of independent landing and adaptation. Not clearly, whether the certain dangerous agent, capable to get into all cracks on the Earth could dissipate for so short term.
There is a difference between gaso — and bio — refuges which can be on a surface, but are divided into many sections for maintenance of a mode of quarantine, and refuges which are intended as a shelter from in the slightest degree intelligent opponent (including other people who did not manage to get a place in a refuge). In case of biodanger island with rigid quarantine can be a refuge if illness is not transferred by air.
A bunker can possess different vulnerabilities. For example, in case of biological threat, is enough insignificant penetration to destroy it. Only hi-tech bunker can be the completely independent. Energy and oxygen are necessary to the bunker. The system on a nuclear reactor can give energy, but modern machines hardly can possess durability more than 30–50 years. The bunker cannot be universal — it should assume protection against the certain kinds of threats known in advance — radiating, biological etc.
The more reinforced is a bunker, the smaller number of bunkers can prepare mankind in advance, and it will be more difficult to hide such bunker. If after a certain catastrophe there was a limited number of the bunkers which site is known, the secondary nuclear war can terminate mankind through countable number of strikes in known places.
The larger is the bunker, the less amount of such bunkers is possible to construct. However any bunker is vulnerable to accidental destruction or contamination. Therefore the limited number of bunkers with certain probability of contamination unequivocally defines the maximum survival time of mankind. If bunkers are connected among themselves by trade and other material distribution, contamination between them is more probable. If bunkers are not connected, they will degrade faster. The more powerfully and more expensively is the bunker, the more difficult is to create it imperceptibly for the probable opponent and so it easeir becomes the goal for an attack. The more cheaply the bunker, the less it is durable.
Casual shelters — the people who have escaped in the underground, mines, submarines — are possible. They will suffer from absence of the central power and struggle for resources. The people, in case of exhaustion of resources in one bunker, can undertake the armed attempts to break in other next bunker. Also the people who have escaped casually (or under the threat of the comong catastrophe), can attack those who was locked in the bunker.
Bunkers will suffer from necessity of an exchange of heat, energy, water and air with an external world. The more independent is the bunker, the less time it can exist in full isolation. Bunkers being in the Earth will deeply suffer from an overheating. Any nuclear reactors and other complex machines will demand external cooling. Cooling by external water will unmask them, and it is impossible to have energy sources lost-free in the form of heat, while on depth of earth there are always high temperatures. Temperature growth, in process of deepening in the Earth, limits depth of possible bunkers. (The geothermal gradient on the average makes 30 degrees C/kilometers. It means, that bunkers on depth more than 1 kilometre are impossible — or demand huge cooling installations on a surface, as gold mines in the republic of South Africa. There can be deeper bunkers in ices of Antarctica.)
The more durable, more universal and more effective, should be a bunker, the earlier it is necessary to start to build it. But in this case it is difficult to foresee the future risks. For example, in 1930th years in Russia was constructed many anti-gase bombproof shelters which have appeared useless and vulnerable to bombardments by heavy demolition bombs.
Efficiency of the bunker which can create the civilisation, corresponds to a technological level of development of this civilisation. But it means that it possesses and corresponding means of destruction. So, especially powerful bunker is necessary. The more independently and more absolutely is the bunker (for example, equipped with AI, nanorobots and biotechnologies), the easier it can do without, eventually, people, having given rise to purely computer civilisation.
People from different bunkers will compete for that who first leaves on a surface and who, accordingly, will own it — therefore will develop the temptation for them to go out to still infected sites of the Earth.
There are possible automatic robotic bunkers: in them the frozen human embryos are stored in a certain artificial uterus and through hundreds or thousand years start to be grown up. (Technology of cryonics of embryos already exists, and works on an artificial uterus are forbidden for bioethics reasons, but basically such device is possible.) With embryos it is possible to send such installations in travel to other planets. However, if such bunkers are possible, the Earth hardly remains empty — most likely it will be populated with robots. Besides, if the human cub who has been brought up by wolves, considers itself as a wolf as whom human who has been brought up by robots will consider itself?
So, the idea about a survival in bunkers contains many reefs which reduce its utility and probability of success. It is necessary to build long-term bunkers for many years, but they can become outdated for this time as the situation will change and it is not known to what to prepare. Probably, that there is a number of powerful bunkers which have been constructed in days of cold war. A limit of modern technical possibilities the bunker of an order of a 30-year-old autonomy, however it would take long time for building — decade, and it will demand billions dollars of investments.
Independently there are information bunkers, which are intended to inform to the possible escaped descendants about our knowledge, technologies and achievements. For example, in Norway, on Spitsbergen have been created a stock of samples of seeds and grain with these purposes (Doomsday Vault). Variants with preservation of a genetic variety of people by means of the frozen sperm are possible. Digital carriers steady against long storage, for example, compact discs on which the text which can be read through a magnifier is etched are discussed and implemented by Long Now Foundation. This knowledge can be crucial for not repeating our errors.

Oct 1, 2008

SpaceX Falcon 1 Rocket Reaches Orbit on 4th Try

Posted by in categories: habitats, lifeboat, space

This is cross-posted from my blog. This milestone by SpaceX is directly relevant to programs by Lifeboat such as the AsteroidShield and SpaceHabitat, and possibly also (eventually) to Space-Based Solar Power.

SpaceX Falcon 1 Rocket Launch photo

Stars My Destination
After the third try, Elon Musk, the founder of SpaceX, co-founder of Paypal, chairman of SolarCity and chairman of Tesla Motors (beat that resumé!) was interviewed by WIRED about the difficulties of making his space rockets reach orbit:

Wired.com: How do you maintain your optimism?

Continue reading “SpaceX Falcon 1 Rocket Reaches Orbit on 4th Try” »