Toggle light / dark theme

CRISPR gene editing in blood stem cells linked to premature aging effects: Study offers solutions

Scientists at the San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Milan, have found that gene editing using CRISPR-Cas9 in combination with AAV6 vectors can trigger inflammatory and senescence-like responses in blood stem cells, compromising their long-term ability to regenerate the blood system.

The study, published in Cell Reports Medicine, outlines new strategies to overcome this hurdle, improving both the safety and efficacy of -based therapies for inherited blood disorders.

The research was led by Dr. Raffaella Di Micco, group leader at SR-Tiget, New York Stem Cell Foundation Robertson Investigator and Associate Professor at the School for Advanced Studies (IUSS) of Pavia, in collaboration with Professor Luigi Naldini, Director of SR-Tiget, and several European research partners.

The Revolution Against Aging And Death Festival (RAADFest): James Strole

New YT video, featuring RAADFest creator, James Strole!


Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Discount Links/Affiliates:
Blood testing (where I get the majority of my labs): https://www.ultalabtests.com/partners/michaellustgarten.

At-Home Metabolomics: https://www.iollo.com?ref=michael-lustgarten.
Use Code: CONQUERAGING At Checkout.

Clearly Filtered Water Filter: https://get.aspr.app/SHoPY

One in 36 Men Carry a Hidden Dementia Risk Factor, Scientists Warn

Men carrying two copies of a common genetic variant face double the risk of dementia, according to new findings from the ASPREE trial. New research has uncovered that men who carry a common genetic variant are twice as likely to develop dementia in their lifetime compared to women. The study.

Early human evolution leapt forward when they began eating meat

The researchers are especially interested in how our bodies maintain balance. Metabolic homeostasis, the fancy term for it, may have shaped more traits than we realize.

And as diets continue to change today, our ancient genetic choices could still be nudging us in new directions.

The study is published in the journal Cell Genomics.

Humans will achieve immortality by 2030, says futurist

We are currently facing the possibility of achieving immortality for humans by 2030. This prediction comes from renowned futurist Ray Kurzweil, who has a history of making accurate predictions. He anticipates that with the ongoing progress in genetics, robotics, and nanotechnology, we will soon have nanobots coursing through our bloodstream, which could enable us to live forever. It’s truly remarkable to consider that this could be a reality within just seven years.

Nanobots, which are small robots sized between 50–100 nm in width, are currently being used in various clinical medical applications. They are used in research as DNA probes, imaging materials for cells, and targeted delivery vehicles for cells. According to Kurzweil, nanobots represent the future of medicine.

They will be capable of repairing our bodies at a cellular level, making us resistant to diseases, aging, and, ultimately death. Additionally, he theorizes that humans may be able to transfer their consciousness into digital form, leading to immortality.

Concept and practice in the use of high-dose eicosapentaenoic acid for cardiovascular disease prevention in hypertriglyceridaemia

Ischaemic heart disease remains the main cause of death worldwide. 1 Within its multifactorial aetiology low-density lipoprotein (LDL) and other apolipoprotein (apo) B-containing lipoproteins play a central, causal role, promoting the development of the underlying process of atherosclerosis. The use of statins and other drugs—ezetimibe, proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, bempedoic acid—to lower LDL is a central strategy in the prevention of atherosclerotic cardiovascular disease (ASCVD) in both primary and secondary settings. 2 However, in many individuals, a substantial ASCVD risk remains after LDL-cholesterol (LDL-C) goal achievement, and elevated plasma triglyceride (TG) is recognised as an important component of this residual risk. 3 Plasma TG, or more specifically TG-rich lipoproteins (TRL), is therefore an additional target for lipid-lowering therapy. Outcome studies of TG lowering using classical drugs such as fibrates and high-dose niacin when added to statins failed to demonstrate further ASCVD risk reduction, although retrospective analyses suggest that subgroups characterised by high TG and low high-density lipoprotein (HDL) may have positive results. 4–7 An alternative approach, treatment with high-dose eicosapentaenoic acid (EPA), has been shown to reduce cardiovascular risk in patients with (and without) hypertriglyceridaemia who are on statins. 8–10

This review explores the concepts behind, and practical implementation of, an evidence-based therapeutic strategy that tailors further intervention according to the plasma lipid profile in patients on standard statin therapy who are often undertreated. 11

Genetic analyses provide robust evidence that elevated TG is a causal risk factor for ASCVD 12 13 and underpin the finding from epidemiological studies that raised TG levels are positively and linearly related to cardiovascular risk (figure 1A). 14 15 The importance of these observations is that they reveal an often unaddressed major risk factor that is of particular relevance in people with obesity or type 2 diabetes in whom TG levels are frequently elevated. 16 Further, outcome trials have shown that elevated TG levels (again especially in type 2 diabetics) are associated with high residual cardiovascular risk in statin-treated patients with established cardiovascular disease, even if they have well-controlled LDL-C. 17–19.

Supplements, Diet That Correspond To A 17y Younger Biological Age (Test #3 in 2025)

Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Discount Links/Affiliates:
Blood testing (where I get the majority of my labs): https://www.ultalabtests.com/partners/michaellustgarten.

At-Home Metabolomics: https://www.iollo.com?ref=michael-lustgarten.
Use Code: CONQUERAGING At Checkout.

Clearly Filtered Water Filter: https://get.aspr.app/SHoPY

Epigenetic, Telomere Testing: https://trudiagnostic.com/?irclickid=U-s3Ii2r7xyIU-LSYLyQdQ6…M0&irgwc=1
Use Code: CONQUERAGING

NAD+ Quantification: https://www.jinfiniti.com/intracellular-nad-test/

Novel Treatment Based on Gene Editing Safely and Effectively Removes HIV-Like Virus from Genomes of Non-Human Primates

(Philadelphia, PA) – A single injection of a novel CRISPR gene-editing treatment safely and efficiently removes SIV – a virus related to the AIDS-causing agent HIV – from the genomes of non-human primates, scientists at the Lewis Katz School of Medicine at Temple University now report. The groundbreaking work complements previous experiments as the basis for the first-ever clinical trial of an HIV gene-editing technology in human patients, which was authorized by the Food and Drug Administration (FDA) in 2022.

The preclinical study, published online in the journal Gene Therapy, tested EBT-001, an SIV-specific CRISPR-Cas9 gene-editing therapy, in rhesus macaques. The study shows that EBT-001 effectively excises SIV from reservoirs – cells and tissues where viruses like SIV and HIV integrate into host DNA and hide for years – without any detectable off-target effects in animals. The work is a significant advance in the generation of a cure for HIV/AIDS in humans.

“Our study supports safety and demonstrates evidence of in vivo SIV editing of a CRISPR gene-editing technology aimed at the permanent inactivation of virus in a broad range of tissues in a large, preclinical animal model, using a one-time injection of the treatment,” said Kamel Khalili, PhD, Laura H. Carnell Professor and Chair of the Department of Microbiology, Immunology, and Inflammation, Director of the Center for Neurovirology and Gene Editing, Director of the Comprehensive NeuroAIDS Center at the Lewis Katz School of Medicine, and senior investigator on the new study.

The purrfect gene: Study shows genetic links between cat purring and androgen receptor gene variations

Whether you are lucky enough to have a cat companion or must merely live this experience vicariously through cat videos, Felis catus is a familiar and comforting presence in our daily lives. Unlike most other feline species, cats exhibit sociality, can live in groups, and communicate both with other cats and humans, which is why they have been humans’ trusted accomplices for millennia.

Despite this intimacy, there is still much that we don’t know about our feline friends. Numerous behavioral studies have been conducted on other mammal species, but relatively few on cats.

In part to fill this gap, a team of researchers at the Wildlife Research Center of Kyoto University are investigating the genetic background of cats’ behavioral traits. Specifically, they aim to understand the association between traits like purring and variation in the androgen receptor gene. Though the exact function of purring remains unclear, previous studies have indicated that it is beneficial for feline communication and survival.

3D genome mapping technology sheds light on how plants regulate photosynthesis

Chinese researchers have developed a technology that sheds light on how the three-dimensional (3D) organization of plant genomes influences gene expression—especially in photosynthesis.

The research, which was led by Prof. Xiao Jun at the Institute of Genetics and Developmental Biology of the Chinese Academy of Sciences, in collaboration with BGI Research, is published in Science Advances.

The innovative method not only provides a more precise tool for understanding the intricate 3D interactions between genes, but also highlights the critical role of long-range chromatin interactions in .

/* */