Menu

Blog

Archive for the ‘genetics’ category: Page 2

Jun 14, 2024

New study offers clues into genetics of X chromosome loss

Posted by in categories: biotech/medical, genetics, life extension

The DNA a woman is born with may influence how her cells respond to chromosomal abnormalities acquired with aging, according to a new genomic analysis co-led by NCI researchers.

Jun 14, 2024

Engineering brain assembloids to interrogate human neural circuits

Posted by in categories: engineering, genetics, neuroscience

A protocol is described for generating human brain assembloids and performing viral labeling and retrograde tracing, 3D live imaging of axon projection and optogenetics with calcium imaging and electrophysiological recordings to model neural circuits.

Jun 14, 2024

Why many lung cancer patients who have never smoked have worse outcomes

Posted by in categories: biotech/medical, genetics

The reason targeted treatment for non-small cell lung cancer fails to work for some patients, particularly those who have never smoked, has been discovered by researchers from UCL, the Francis Crick Institute and AstraZeneca.

The study, published in Nature Communications, shows that lung cancer cells with two particular genetic mutations are more likely to double their genome, which helps them to withstand treatment and develop resistance to it.

In the UK, lung cancer is the third most common type of cancer and the leading cause of cancer death. Around 85% of patients with lung cancer have (NSCLC), and this is the most common type found in patients who have never smoked. Considered separately, “never smoked” lung cancer is the fifth-most common cause of cancer death in the world.

Jun 13, 2024

Biomedicine Breakthrough: Complete Gene Insertion Now Possible in Human Cells

Posted by in categories: biotech/medical, genetics

The gene-editing technique employs prime editors along with advanced enzymes known as recombinases. This method has the potential to lead to universal gene therapies that are effective for conditions like cystic fibrosis.

Researchers at the Broad Institute of MIT and Harvard have enhanced a gene-editing technology that can now efficiently insert or replace entire genes in human cell genomes, potentially making it suitable for therapeutic uses.

The advance, from the lab of Broad core institute member David Liu, could one day help researchers develop a single gene therapy for diseases such as cystic fibrosis that are caused by one of hundreds or thousands of different mutations in a gene. Using this new approach, they would insert a healthy copy of the gene at its native location in the genome, rather than having to create a different gene therapy to correct each mutation using other gene-editing approaches that make smaller edits.

Jun 13, 2024

A Billion-Year Evolutionary Tale — Biologists Trace Cell Division Back to Its Roots

Posted by in categories: evolution, genetics

Cell division is a crucial process for all life forms, from bacteria to blue whales, enabling growth, reproduction, and the continuation of species. Despite its universal nature, the methods of cell division vary significantly across organisms. A recent study by EMBL Heidelberg’s Dey group, along with their collaborators and published in Nature, investigates the evolution of cell division methods in organisms closely related to fungi and animals. For the first time, this research demonstrates the connection between an organism’s life cycle and its cell division techniques.

Despite last sharing a common ancestor over a billion years ago, animals and fungi are similar in many ways. Both belong to a broader group called ‘eukaryotes’ – organisms whose cells store their genetic material inside a closed compartment called the ‘nucleus’. The two differ, however, in how they carry out many physiological processes, including the most common type of cell division – mitosis.

Most animal cells undergo ‘open’ mitosis, in which the nuclear envelope – the two-layered membrane separating the nucleus from the rest of the cell – breaks down when cell division begins. However, most fungi use a different form of cell division – called ‘closed’ mitosis – in which the nuclear envelope remains intact throughout the division process. However, very little is known about why or how these two distinct modes of cell division evolved and what factors determine which mode would be predominantly followed by a particular species.

Jun 13, 2024

How Genes and Epigenetics Shape Brain Folding

Posted by in categories: genetics, neuroscience

Summary: A new study uncovered how epigenetic marks and the Cux2 protein influence brain folding. The study reveals that the epigenetic mark H3K27ac and Cux2 are key to forming the cerebral cortex’s gyri and sulci.

These findings enhance our understanding of brain development and could inform treatments for brain malformations. The research underscores the complexity of the nervous system and the pivotal role of epigenetics in brain structure.

Jun 12, 2024

CRISPR: Gene editing and beyond

Posted by in categories: bioengineering, biotech/medical, genetics

The CRISPR-Cas9 system has revolutionised gene-editing, but cutting DNA isn’t all it can do. From turning gene expression on and off to fluorescently tagging particular sequences, this animation explores some of the exciting possibilities of CRISPR.

Download a poster on ‘The expanding CRISPR toolbox’ here: https://www.nature.com/posters/crispr

Continue reading “CRISPR: Gene editing and beyond” »

Jun 12, 2024

Dr. David Boucher, Ph.D. — Director, Infectious Disease Preparedness and Response, ASPR, U.S. HHS

Posted by in categories: biotech/medical, chemistry, genetics, health

Is Director, Infectious Disease Preparedness and Response, Administration for Strategic Preparedness and Response, U.S. Department of Health and Human Services (https://aspr.hhs.gov/Pages/Home.aspx).

The HHS Administration for Strategic Preparedness and Response (ASPR) leads the nation’s medical and public health preparedness for, response to, and recovery from disasters and other public health emergencies.
ASPR collaborates with hospitals, healthcare coalitions, biotech firms, community members, state, local, tribal, and territorial governments, and other partners across the country to improve readiness and response capabilities.

Continue reading “Dr. David Boucher, Ph.D. — Director, Infectious Disease Preparedness and Response, ASPR, U.S. HHS” »

Jun 12, 2024

FDA Approves First CRISPR Treatment in U.S.

Posted by in categories: biotech/medical, genetics

Two new therapies—one which uses the gene-editing technology—treat sickle cell anemia.

Jun 11, 2024

2024 Warren Alpert Prize Honors Four Pioneers in CAR T-Cell Therapy

Posted by in categories: biotech/medical, genetics

Significance of the work.

CAR T cells are genetically engineered immune cells tailored to respond to a specific molecule found on the surface of tumor cells. These cells are a form of immunotherapy — an approach that harnesses the native ability of the immune system to fight diseases, particularly cancer. CAR T-cell therapy represents a milestone in cancer treatment. It propels cancer therapies beyond traditional chemotherapy and radiation treatments, which are often highly toxic and non-specific.

The four scientists honored with this year’s Warren Alpert Foundation Prize each played key distinct and complementary roles in developing CAR T cells and making their use in the clinic possible. Today, CAR T-cell therapies offer great hope for patients with various B-cell malignancies who have relapsed or failed to respond to other therapies. CAR T cell-based approaches could eventually be used to treat solid tumors, as well as a variety of autoimmune diseases and other conditions.

Page 2 of 48312345678Last