Menu

Blog

Archive for the ‘food’ category: Page 94

Jul 4, 2022

New Artificial Photosynthesis Method Grows Food With No Sunshine

Posted by in categories: chemistry, food, solar power, sustainability

Photosynthesis uses a series of chemical reactions to convert carbon dioxide, water, and sunlight into glucose and oxygen. The light-dependent stage comes first, and relies on sunlight to transfer energy to plants, which convert it to chemical energy. The light-independent stage (also called the Calvin Cycle) follows, when this chemical energy and carbon dioxide are used to form carbohydrate molecules (like glucose).

A research team from UC Riverside and the University of Delaware found a way to leapfrog over the light-dependent stage entirely, providing plants with the chemical energy they need to complete the Calvin Cycle in total darkness. They used an electrolysis to convert carbon dioxide and water into acetate, a salt or ester form of acetic acid and a common building block for biosynthesis (it’s also the main component of vinegar). The team fed the acetate to plants in the dark, finding they were able to use it as they would have used the chemical energy they’d get from sunlight.

They tried their method on several varieties of plants and measured the differences in growth efficiency as compared to regular photosynthesis. Green algae grew four times more efficiently, while yeast saw an 18-fold improvement.

Jul 3, 2022

Jennifer Doudna | Four ways that CRISPR will revolutionize healthcare

Posted by in categories: bioengineering, biotech/medical, chemistry, food, health, policy

Hear from Nobel laureate Jennifer Doudna on the four ways that CRISPR gene editing technologies will revolutionize healthcare.

In her 31 March talk at the Frontiers Forum, Prof Jennifer Doudna outlined how CRISPR-based therapies are already transforming the lives of patients with previously limited treatment options. She also gave her vision for how her serendipitous discovery will revolutionize healthcare for us all. The session was attended by over 9,200 representatives from science, policy and business across the world.

Continue reading “Jennifer Doudna | Four ways that CRISPR will revolutionize healthcare” »

Jul 1, 2022

Looking Beyond 2050 — On Earth and in Space with Lord Martin Rees

Posted by in categories: biotech/medical, business, education, evolution, food, health, media & arts, neuroscience

Cosmologist, noted author, Astronomer Royal and recipient of the 2015 Nierenberg Prize for Science in the Public Interest Lord Martin Rees delivers a thought-provoking and insightful perspective on the challenges humanity faces in the future beyond 2050. [3/2016] [Show ID: 30476]

Frontiers of Knowledge.
(https://www.uctv.tv/frontiers-of-knowledge)

Continue reading “Looking Beyond 2050 — On Earth and in Space with Lord Martin Rees” »

Jul 1, 2022

One Dead and 22 Have Been Hospitalized in Listeria Outbreak Tied to Florida

Posted by in categories: biotech/medical, food

One person has died and 22 people have been hospitalized in a listeria outbreak, with most of the infected people having been in Florida about a month before they became sick, the federal authorities said Thursday.

A food source has not been identified as the cause of the outbreak, which has sickened people across 10 states from January 2021 through June 12, 2022, the Centers for Disease Control and Prevention said in a statement.

It typically takes three or four weeks to determine if an illness is tied to an outbreak, so recent cases may not be reported in the data. The true number of sick people is most likely higher because some people recover without medical care, the agency said.

Jul 1, 2022

As these bacteria eat, they generate an unusual triangular molecule that can be used to make jet fuel

Posted by in categories: chemistry, energy, food, military

Aircrafts transport people, ship goods, and perform military operations, but the petroleum-based fuels that power them are in short supply. In research publishing on June 30 in the journal Joule, researchers at the Lawrence Berkeley Lab have found a way to generate an alternative jet fuel by harvesting an unusual carbon molecule produced by the metabolic process of bacteria commonly found in soil.

“In chemistry, everything that requires to make will release energy when it’s broken,” says lead author Pablo Cruz-Morales, a microbiologist at DTU Biosustain, part of the Technical University of Denmark. When petroleum jet is ignited, it releases a tremendous amount of energy, and the scientists at the Keasling Lab at the Lawrence Berkeley Laboratory thought there must be a way to replicate this without waiting millions of years for new fossil fuels to form.

Jay Keasling, a at University of California, Berkeley, approached Cruz-Morales, who was a postdoc in his lab at the time, to see if he could synthesize a tricky molecule that has the potential to produce a lot of energy. “Keasling told me: it’s gonna be an explosive idea,” says Cruz-Morales.

Jul 1, 2022

A longevity diet that hacks cell ageing could add years to your life

Posted by in categories: food, life extension

A new diet based on research into the body’s ageing process suggests you can increase your life expectancy by up to 20 years by changing what, when and how much you eat.

Jul 1, 2022

Borrowed gene helps maize adapt to high elevations, cold temperatures

Posted by in categories: chemistry, evolution, food

Researchers at North Carolina State University show that an important gene in maize called HPC1 modulates certain chemical processes that contribute to flowering time, and has its origins in “teosinte mexicana,” a precursor to modern-day corn that grows wild in the highlands of Mexico. The findings provide insight into plant evolution and trait selection, and could have implications for corn and other crops’ adaptation to low temperatures.

“We are broadly interested in understanding how natural variation of lipids are involved in the growth and development of plants, and how these compounds may help plants adapt to their immediate environments,” said Rubén Rellán-Álvarez, assistant professor of structural and molecular biochemistry at NC State and the corresponding author of a paper describing the research. “Specifically, we wanted to learn more about variation in lipids called phospholipids, which consist of phosphorus and fatty acids, and their role in adaptation to cold, low phosphorus, and the regulation of important processes for plant fitness and yield like flowering time.”

Maize grown at higher altitudes, like the highlands of Mexico, needs special accommodations in order to grow successfully. The colder temperatures in these mountainous regions put maize at a slight disadvantage when compared with maize grown at lower elevations and higher temperatures.

Jun 29, 2022

Aquaculture drives aquatic food yields to new high

Posted by in categories: food, sustainability

The production of wild and farm-raised fish, shellfish and algae reached record levels in 2020, and future increases could be vital to fighting world hunger, the Food and Agriculture Organization said Wednesday.

Driven by sustained growth in aquaculture, and aquatic farming together hauled in 214 million tonnes, the UN agency said in a report.

The total first-sale value of 2020 production topped $400 million, with $265 million coming from aquaculture, a sector poised for further expansion.

Jun 29, 2022

The Secret Cleaning Power of Bacteria

Posted by in categories: biological, food

Circa 2021


Microbes are really good at eating a range of substances, so humans are putting them to work cleaning up our messes — and our art.

Jun 28, 2022

Artificial photosynthesis can produce food without sunshine

Posted by in categories: bioengineering, biological, chemistry, food, solar power, sustainability

Photosynthesis has evolved in plants for millions of years to turn water, carbon dioxide, and the energy from sunlight into plant biomass and the foods we eat. This process, however, is very inefficient, with only about 1% of the energy found in sunlight ending up in the plant. Scientists at UC Riverside and the University of Delaware have found a way to bypass the need for biological photosynthesis altogether and create food independent of sunlight by using artificial photosynthesis.

The research, published in Nature Food, uses a two-step electrocatalytic process to convert , electricity, and water into acetate, the form of the main component of vinegar. Food-producing organisms then consume acetate in the dark to grow. Combined with to generate the electricity to power the electrocatalysis, this hybrid organic-inorganic system could increase the conversion efficiency of sunlight into , up to 18 times more efficient for some foods.

“With our approach we sought to identify a new way of producing food that could break through the limits normally imposed by biological photosynthesis,” said corresponding author Robert Jinkerson, a UC Riverside assistant professor of chemical and environmental engineering.

Page 94 of 319First9192939495969798Last