Toggle light / dark theme

A specimen retrieved from a cupboard in the Natural History Museum in London has shown that modern lizards originated in the Late Triassic and not the Middle Jurassic as previously thought.

This fossilized relative of living lizards such as monitor lizards, and slow worms was identified in a stored museum collection from the 1950s, including specimens from a quarry near Tortworth in Gloucestershire, South West England. The technology didn’t exist then to expose its contemporary features.

As a modern-type lizard, the new fossil impacts all estimates of the origin of lizards and snakes, together called the Squamata, and affects assumptions about their rates of evolution, and even the key trigger for the origin of the group.

Axions that decay into photons could account for visible light that exceeds what’s expected to come from all known galaxies.

If you could switch off the Milky Way’s stars and gaze at the sky with a powerful telescope, you’d see the cosmic optical background (COB)—visible-wavelength light emitted by everything outside our Galaxy. Recent studies by the New Horizons spacecraft—which, after its Pluto flyby, has been looking further afield—have returned the most precise measurements of the COB yet, showing it to be brighter than expected by a factor of 2. José Bernal and his colleagues at Johns Hopkins University in Maryland propose that this excess could be caused by decaying dark matter particles called axions [1]. They say that their model could be falsified or supported by future observations.

Comparing COB measurements to predictions provides a tool for testing hypotheses about the structure of the Universe. But measuring the COB is very difficult due to contamination by diffuse light from much nearer sources, especially sunlight scattered by interplanetary dust. Observing from the edge of our Solar System, New Horizons should be unaffected by most of this contamination, making the measured excess brightness a tool for improving our understanding of galaxy evolution.

You will not believe what we’re about to tell you — scientists have just created the very first Dino
chicken!
Using chicken DNA, they’ve proven how evolution works, and we might just see dinosaurs roam.
the Earth again. It’s our one chance to live out a real-life version of Jurassic Park!
So, join us as we learn how scientists took chicken DNA and created the chickenosaurus’

Disclaimer Fair Use:
1. The videos have no negative impact on the original works.
2. The videos we make are used for educational purposes.
3. The videos are transformative in nature.
4. We use only the audio component and tiny pieces of video footage, only if it’s necessary.

DISCLAIMER:
Our channel is purely made for entertainment purposes, based on facts, rumors, and fiction.

Copyright Disclaimer under section 107 of the Copyright Act 1976, allowance is made for “fair use” for purposes such as criticism, comment, news reporting, teaching, scholarship, education, and research. Fair use is a use permitted by copyright statutes that might otherwise be infringing.

NASA’s Discover supercomputer simulated the extreme conditions of the distant cosmos.

A team of scientists from NASA’s Goddard Space Flight Center used the U.S. space agency’s Center for Climate Simulation (NCCS) Discover supercomputer to run 100 simulations of jets emerging from supermassive black holes.

The scientists set out to better understand these jets — massive beams of energetic particles shooting out into the cosmos — as they play a crucial role in the evolution of the universe.

Recently, a team led by Prof. Guo Guangcan achieved long-lived storage of high-dimensional orbital angular momentum (OAM) quantum states of photons based on cold atomic ensembles, using a guiding magnetic field combined with clock state preparation. Their work was published in Physical Review Letters.

Previous work has shown that integrating multimode memory into can greatly improve channel capacity, which is crucial for long distance quantum communication. The collective enhancement effect of the cold atomic ensemble makes it an efficient medium for storing photonic information. Although important progress has been made, many problems remain to be solved in long-lived spatial multimode memory based on cold atomic ensembles, one of which is how to achieve for multimode after a long storage time since multiple spatial modes are more easily affected by the surrounding environment.

Based on the degrees of freedom of OAM, the team carried out research on the long-lived storage of high-dimensional multimode quantum states using the cold 85Rb system. In this work, to overcome the effect of inhomogeneous evolution due to the spatial complexity of stored OAM, the team used a guiding to dominate atomic evolution and then employed a pair of magnetically insensitive states to suppress the decoherence in the transverse direction. After the clock states were employed, the between different Zeeman sublevels was eliminated, which consequently extended the lifetime of faithful storage.

We review the salient evidence consistent with or predicted by the Hoyle-Wickramasinghe (H-W) thesis of Cometary (Cosmic) Biology. Much of this physical and biological evidence is multifactorial. One particular focus are the recent studies which date the emergence of the complex retroviruses of vertebrate lines at or just before the Cambrian Explosion of ∼500 Ma. Such viruses are known to be plausibly associated with major evolutionary genomic processes. We believe this coincidence is not fortuitous but is consistent with a key prediction of H-W theory whereby major extinction-diversification evolutionary boundaries coincide with virus-bearing cometary-bolide bombardment events. A second focus is the remarkable evolution of intelligent complexity (Cephalopods) culminating in the emergence of the Octopus. A third focus concerns the micro-organism fossil evidence contained within meteorites as well as the detection in the upper atmosphere of apparent incoming life-bearing particles from space. In our view the totality of the multifactorial data and critical analyses assembled by Fred Hoyle, Chandra Wickramasinghe and their many colleagues since the 1960s leads to a very plausible conclusion – life may have been seeded here on Earth by life-bearing comets as soon as conditions on Earth allowed it to flourish (about or just before 4.1 Billion years ago); and living organisms such as space-resistant and space-hardy bacteria, viruses, more complex eukaryotic cells, fertilised ova and seeds have been continuously delivered ever since to Earth so being one important driver of further terrestrial evolution which has resulted in considerable genetic diversity and which has led to the emergence of mankind.

The study’s findings could play a crucial role in developing a complex brain.

A common feature that connects humans and octopuses has only recently been revealed. It may sound a little bit quirky to you, but not to scientists.

Published very recently in Science Advances today, a team led by Nikolaus Rajewsky of the Max Delbrück Center has now shown that their evolution is linked to a dramatic expansion of their microRNA repertoire.

As said in the statement, the last known common ancestor of humans and cephalopods is a rudimentary wormlike animal with low intelligence and basic eyespots, which can be found if we travel far enough back in evolutionary history.


Nothing in biology makes sense except in the light of evolution. The gradualism of evolution has explained and dissolved life’s mysteries—life’s seemingly irreducible complexity and the illusion that living things possess some sort of mysterious vitalizing essence. So, too, evolution is likely to be key to demystifying the seemingly inexplicable, ethereal nature of consciousness.

First, what does it even mean to say that “Nothing in biology makes sense except in the light of evolution”? If the chosen topic is human consciousness, Martin Luther King and Mother Teresa come quickly to mind. But then what does the term “evolution” contribute to the discussion of the origin of human consciousness? Is it something useful or something theorists are stuck with, come what may?

Science theories should make predictions. Who predicted either King or Mother Teresa?