Toggle light / dark theme

The University of Chicago’s new climate initiative

As fringe as the idea of solar radiation modification once was and as generally controversial as it remains, it is gaining some traction. Last spring, the University of Chicago hired David Keith, one of the most visible proponents of solar geoengineering, to lead a new Climate Systems Engineering initiative, committing to at least 10 new faculty hires for the program. The group will study solar geoengineering, as well as other kinds of Earth system modifications aimed at addressing the climate crisis.

With this initiative, the University of Chicago is attempting to position itself as the place for serious scientific consideration of the logistics and implications of Earth system interventions aimed at reversing or counteracting climate change. It is part of a broader university effort to become a global leader in the climate and energy space.

Previously, Keith was at Harvard University, where he helped launch the Solar Geoengineering Research Program. After repeated delays and years of controversy, Harvard recently canceled a small-scale outdoor geoengineering experiment that Keith helped plan. That experiment would have involved launching a high-altitude balloon, releasing fine particles of calcium carbonate into the stratosphere, and then sending the balloon back through the cloud to monitor how those particles disperse and interact within the atmosphere, and with solar radiation.

Significant advancement made in engineering biology and clean energy

The University of Liverpool has reported a significant advancement in engineering biology and clean energy. A team of researchers has developed an innovative light-driven hybrid nanoreactor that merges natural efficiency with cutting-edge synthetic precision to produce hydrogen—a clean and sustainable energy source.

Published in ACS Catalysis, the study demonstrates a pioneering approach to artificial photocatalysis, addressing a critical challenge in using solar energy for fuel production. While nature’s photosynthetic systems have evolved for optimal sunlight utilisation, artificial systems have struggled to achieve comparable performance.

The hybrid nanoreactor is the product of a novel integration of biological and synthetic materials. It combines recombinant α-carboxysome shells—natural microcompartments from bacteria—with a microporous organic semiconductor. These carboxysome shells protect sensitive hydrogenase enzymes, which are highly effective at producing hydrogen but prone to deactivation by oxygen. Encapsulating these enzymes ensures sustained activity and efficiency.

LLNL researchers explore next-gen 3D printing to harness fusion energy

When Lawrence Livermore National Laboratory (LLNL) achieved fusion ignition at the National Ignition Facility (NIF) in December 2022, the world’s attention turned to the prospect of how that breakthrough experiment — designed to secure the nation’s nuclear weapons stockpile — might also pave the way for virtually limitless, safe and carbon-free fusion energy.

Advanced 3D printing offers one potential solution to bridging the science and technology gaps presented by current efforts to make inertial fusion energy (IFE) power plants a reality.

“Now that we have achieved and repeated fusion ignition,” said Tammy Ma, lead for LLNL’s inertial fusion energy institutional initiative, “the Lab is rapidly applying our decades of know-how into solving the core physics and engineering challenges that come with the monumental task of building the fusion ecosystem necessary for a laser fusion power plant. The mass production of ignition-grade targets is one of these, and cutting-edge 3D printing could help get us there.”

Revolutionizing Clean Energy: Researchers Develop Breakthrough Hydrogen Nanoreactor

The University of Liverpool has created a hybrid nanoreactor that uses sunlight to produce hydrogen efficiently, offering a sustainable and cost-effective alternative to traditional photocatalysts.

The University of Liverpool has announced a major breakthrough in engineering biology and clean energy. Researchers have developed a groundbreaking light-powered hybrid nanoreactor that combines the natural efficiency of biological processes with the precision of synthetic design to produce hydrogen, a clean and renewable energy source.

Detailed in ACS Catalysis, the study introduces an innovative solution to a longstanding challenge in solar energy utilization for fuel production. While nature’s photosynthesis systems excel at harnessing sunlight, artificial systems have historically fallen short. This new approach to artificial photocatalysis represents a significant step forward in bridging that performance gap.

Scientists reinvent equations governing formation of snowflakes, raindrops and Saturn’s rings

Skoltech researchers have proposed novel mathematical equations that describe the behavior of aggregating particles in fluids. This bears on natural and engineering processes as diverse as rain and snow formation, the emergence of planetary rings, and the flow of fluids and powders in pipes.

Reported in Physical Review Letters, the new equations eliminate the need for juggling two sets of equations that had to be used in conjunction, which led to unacceptable errors for some applications.

Fluid aggregation is involved in many processes. In the atmosphere, agglomerate into rain, and ice microcrystals into snow. In space, particles orbiting come together to form rings like those of Saturn.

Scientists Have Finally Cracked the Code of Cellular Communication

Researchers at UC San Diego have developed SMART, a software package capable of realistically simulating cell-signaling networks.

This tool, tested across various biological systems, enhances the understanding of cellular responses and aids in advancing research in fields like systems biology and pharmacology.

Researchers at the University of California San Diego (UCSD) have developed and tested a new software tool called Spatial Modeling Algorithms for Reactions and Transport (SMART). This innovative software can accurately simulate cell-signaling networks — the intricate systems of molecular interactions that enable cells to respond to signals from their environment. These networks are complex due to the many steps involved and the three-dimensional shapes of cells and their components, making them challenging to model with existing tools. SMART addresses these challenges, promising to accelerate research in fields such as systems biology, pharmacology, and biomedical engineering.

Nano drug delivery system eliminates need for complicated carriers

A team of University of Melbourne researchers from the Caruso Nanoengineering Group has created an innovative drug delivery system with outstanding potential to improve drug development.

The team has pioneered a that is a coordination network composed of only metal ions and biomolecules, known as metal–biomolecule network (MBN). This system eliminates the need for complicated drug “carriers,” making it potentially more useful in a range of applications.

The research has been published in Science Advances and was led by Melbourne Laureate Professor and NHMRC Leadership Fellow Frank Caruso, from the Department of Chemical Engineering in the Faculty of Engineering and Information Technology, with Research Fellows Dr. Wanjun Xu and Dr. Zhixing Lin joint first authors.

Could Inducing Lucid Dreams Treat Insomnia and Nightmares?

“Engineering” sleeping consciousness could reduce nightmares, treat insomnia—and even be induce specific dreams just for fun.

By Michelle Carr edited by Mark Fischetti

I routinely control my own dreams. During a recent episode, in my dream laboratory, my experience went like this: I was asleep on a twin mattress in the dark lab room, wrapped in a cozy duvet and a blanket of silence. But I felt like I was awake. The sensation of being watched hung over me. Experimenters two rooms over peered at me through an infrared camera mounted on the wall. Electrodes on my scalp sent them signals about my brain waves. I opened my eyes—at least I thought I did—and sighed. Little specks of pink dust hovered in front of me. I examined them curiously. “Oh,” I then thought, realizing I was asleep, “this is a dream.”

Research explores nanobubble stability and its real-world implications

Gases are essential for many chemical reactions, and bubbles are one way for these gases to be held in solution. When compared to larger bubbles, nanobubbles have increased stability—meaning that they can remain in a solution longer without popping. Due to their increased stability, they allow for higher availability of gases in solution, allowing more time for chemical reactions to occur.

Led by Dr. Hamidreza Samouei, researchers at Texas A&M University are advancing their understanding of what makes nanobubbles—bubbles with diameters smaller than a single strand of hair—so stable and what factors play a role in their stability. Their findings appear in a recent issue of The Journal of Physical Chemistry.

“When we inject gas at the industrial scale, we don’t want to waste that gas. We want to maximize its use for ,” said Samouei, a research assistant professor in the Harold Vance Department of Petroleum Engineering. “That’s the main purpose, to keep the gas in solution for a very, very long time, ideally infinite time; to keep the gas in solution without bursting.”

/* */