Toggle light / dark theme

Worldwide, glass manufacturing produces at least 86 million tons of carbon dioxide every year. A new type of glass promises to cut this carbon footprint in half. The invention, called LionGlass and engineered by researchers at Penn State, requires significantly less energy to produce and is much more damage resistant than standard soda lime silicate glass. The research team recently filed a patent application as a first step toward bringing the product to market.

“Our goal is to make glass manufacturing sustainable for the long term,” said John Mauro, Dorothy Pate Enright Professor of Materials Science and Engineering at Penn State and lead researcher on the project. “LionGlass eliminates the use of carbon-containing batch materials and significantly lowers the melting temperature of glass.”

Soda lime silicate glass, the common glass used in everyday items from windows to glass tableware, is made by melting three primary materials: quartz sand, soda ash and limestone. Soda ash is and limestone is calcium carbonate, both of which release carbon dioxide (CO2), a heat-trapping greenhouse gas, as they are melted.

See my explanation of the spent fuel rods and why if something is not done to get water to the spent fuel rod pools at the Zaporizhzhia Nuclear Plant there will be a catastrophic radiation release that may trigger WWIII. See why Russia and Ukraine are each saying the other is going to blow up the cooling pools and the plant. See what that means for you. Take your preps seriously!

See the Special Deals at My Patriot Supply: www.PrepWithGreg.com.

Outstanding Antioxidant For Your Health: https://shopc60.com/
Use discount code: Greg10 for 10% off.

True Leaf Market brings you a great selection of Non GMO heirloom seed: http://www.pntrac.com/t/TUJGRklGSkJGTU1IS0hCRkpIRk1K

A seemingly magical material can block microwaves, infrared (IR) heat, and light and then magically shift to a transparent state that also allows IR and microwaves to pass through simply by being stretched or contracted.

Inspired by the properties of squid skin, which can shift from translucent to opaque due to the presence of iridocytes and chromatophores, the new material could help create stealth materials, safeguard electronic devices, dramatically improve energy efficiency in commercial buildings, and even protect against microwave weapons.

No One Has Accomplished All of These Feats in One Material .

Year 2015 😗😁


Physicists in France have figured out how to optimise an advanced type of electric rocket thruster that uses a stream of plasma travelling at 72,420 km/h (45,000 mph) to propel spacecraft forward, allowing them to run on 100 million times less fuel than conventional chemical rockets.

Known as a Hall thruster, these engines have been operating in space since 1971, and are now routinely flown on communication satellites and space probes to adjust their orbits when needed. These things are awesome, and scientists want to use them to get humans to Mars, except there’s one — rather large — problem: the current lifespan of a Hall thruster is around 10,000 operation hours, and that’s way too short for most space exploration missions, which require upwards of 50,000 hours.

Hall thrusters work just like regular ion thrusters, which blast a stream of charged ions from an anode to a cathode (positively and negatively charged electrodes), where they get neutralised by a beam of electrons. This causes the elections to shoot one way, and the attached rocket to shoot another, propelling it forward.

What if water could be boiled more quickly and efficiently? It would benefit many industrial processes by reducing energy use, including most electricity generating plants, many chemical production systems, and even cooling systems for electronics.

Improving HTC and CHF

Now, MIT scientists have conceived of a method to do just that, according to a press release by the institution published on Tuesday. The researchers have found a way to improve at the same time the two key parameters that are conducive to the boiling process, the heat transfer coefficient (HTC) and the critical heat flux (CHF).

It turns out that reports of its death were greatly exaggerated. NASA says it’s figured out a way to extend the mission of its interstellar Voyager 2 probe by another three years.

And that’s no easy feat, considering the probe has been screaming through the cosmos since 1977 and is currently more than 12 billion miles from Earth.

The probe recently switched to its backup power reserves, which were originally set aside as part of an onboard safety mechanism, according to an update by NASA’s Jet Propulsion Laboratory.

The rapid development of wearable electronics requires its energy supply part to be flexible, wearable, integratable and sustainable. However, some of the energy supply units cannot meet these requirements at the same time, and there is also a capacity limitation of the energy storage units, and the development of sustainable wearable self-charging power supplies is crucial. Here, we report a wearable sustainable energy harvesting-storage hybrid self-charging power textile. The power textile consists of a coaxial fiber-shaped polylactic acid/reduced graphene oxide/polypyrrole (PLA-rGO-PPy) triboelectric nanogenerator (fiber-TENG) that can harvest low-frequency and irregular energy during human motion as a power generation unit, and a novel coaxial fiber-shaped supercapacitor (fiber-SC) prepared by functionalized loading of a wet-spinning graphene oxide fiber as an energy storage unit. The fiber-TENG is flexible, knittable, wearable and adaptable for integration with various portable electronics. The coaxial fiber-SC has high volumetric energy density and good cycling stability. The fiber-TENG and fiber-SC are flexible yarn structures for wearable continuous human movement energy harvesting and storage as on-body self-charging power systems, with light-weight, ease of preparation, great portability and wide applicability. The integrated power textile can provide an efficient route for sustainable working of wearable electronics.