Toggle light / dark theme

CES, the world’s largest tech conference, will be online-only in 2021

The Consumer Electronics Show (CES), long the world’s largest tech trade show, will be all-digital in January 2021, the Consumer Technology Association (CTA) announced on Monday. The CTA cited the COVID-19 pandemic and concerns about the spread of the virus as its reasoning for canceling the in-person event.

CES usually takes place in Las Vegas and involves many large gatherings in tightly packed convention halls, as well as smaller meetings between retailers, manufacturers, and other industry professionals.

Per the CTA, the digital CES will be a “new immersive experience.” The organization did not provide many details about what the online event will look like, but it claims it will be “highly personalized.” The organization still plans to hold CES 2022 in Las Vegas.

New Spin Record Set: 1 Million rpm

Circa 2008


Industrial motors can spin at a head-spinning 250,000 revolutions per minute. But a new matchbook-sized motor runs circles around the competition.

Researchers from ETH Zurich’s Department of Power Electronics created a drive system in cooperation with its industrial partners that exceeded 1,000,000 rpm in tests.

ChipScope – a new approach to optical microscopy

For half a millennium, people have tried to enhance human vision by technical means. While the human eye is capable of recognizing features over a wide range of size, it reaches its limits when peering at objects over giant distances or in the micro- and nanoworld. Researchers of the EU funded project ChipScope are now developing a completely new strategy towards optical microscopy.

The conventional light microscope, still standard equipment in laboratories, underlies the fundamental laws of optics. Thus, resolution is limited by diffraction to the so called Abbe limit’ – structural features smaller than a minimum of 200 nm cannot be resolved by this kind of microscope.

So far, all technologies for going beyond the Abbe limit rely on complex setups, with bulky components and advanced laboratory infrastructure. Even a conventional light microscope, in most configurations, is not suitable as a mobile gadget to do research out in the field or in . In the ChipScope project funded by the EU, a completely new strategy towards optical microscopy is explored. In classical the analyzed sample area is illuminated simultaneously, collecting the light which is scattered from each point with an area-selective detector, e.g. the human eye or the sensor of a camera.

A focused approach to imaging neural activity in the brain

When neurons fire an electrical impulse, they also experience a surge of calcium ions. By measuring those surges, researchers can indirectly monitor neuron activity, helping them to study the role of individual neurons in many different brain functions.

One drawback to this technique is the crosstalk generated by the axons and dendrites that extend from neighboring neurons, which makes it harder to get a distinctive signal from the neuron being studied. MIT engineers have now developed a way to overcome that issue, by creating indicators, or sensors, that accumulate only in the body of a neuron.

“People are using calcium indicators for monitoring neural activity in many parts of the brain,” says Edward Boyden, the Y. Eva Tan Professor in Neurotechnology and a professor of biological engineering and of brain and cognitive sciences at MIT. “Now they can get better results, obtaining more accurate neural recordings that are less contaminated by crosstalk.”