Menu

Blog

Archive for the ‘electronics’ category: Page 48

Jul 2, 2020

The detector with a billion sensors that may finally snare dark matter

Posted by in categories: cosmology, electronics

Dark matter must exist, but has evaded all attempts to find it. Now comes our boldest plan yet – sensing its minuscule gravitational force as it brushes past us.

Jun 30, 2020

Samsung’s new 870 QVO lineup features its first 8TB SSD for consumers

Posted by in categories: computing, electronics

Samsung has announced its latest lineup of high-capacity consumer solid-state drives: the 870 QVO. It starts at $129.99 for the 1TB SSD, working all the way up to Samsung’s first 8TB model made for consumers.

Jun 28, 2020

ChipScope – a new approach to optical microscopy

Posted by in category: electronics

For half a millennium, people have tried to enhance human vision by technical means. While the human eye is capable of recognizing features over a wide range of size, it reaches its limits when peering at objects over giant distances or in the micro- and nanoworld. Researchers of the EU funded project ChipScope are now developing a completely new strategy towards optical microscopy.

The conventional light microscope, still standard equipment in laboratories, underlies the fundamental laws of optics. Thus, resolution is limited by diffraction to the so called Abbe limit’ – structural features smaller than a minimum of 200 nm cannot be resolved by this kind of microscope.

So far, all technologies for going beyond the Abbe limit rely on complex setups, with bulky components and advanced laboratory infrastructure. Even a conventional light microscope, in most configurations, is not suitable as a mobile gadget to do research out in the field or in . In the ChipScope project funded by the EU, a completely new strategy towards optical microscopy is explored. In classical the analyzed sample area is illuminated simultaneously, collecting the light which is scattered from each point with an area-selective detector, e.g. the human eye or the sensor of a camera.

Jun 27, 2020

A focused approach to imaging neural activity in the brain

Posted by in categories: electronics, neuroscience

When neurons fire an electrical impulse, they also experience a surge of calcium ions. By measuring those surges, researchers can indirectly monitor neuron activity, helping them to study the role of individual neurons in many different brain functions.

One drawback to this technique is the crosstalk generated by the axons and dendrites that extend from neighboring neurons, which makes it harder to get a distinctive signal from the neuron being studied. MIT engineers have now developed a way to overcome that issue, by creating indicators, or sensors, that accumulate only in the body of a neuron.

“People are using calcium indicators for monitoring neural activity in many parts of the brain,” says Edward Boyden, the Y. Eva Tan Professor in Neurotechnology and a professor of biological engineering and of brain and cognitive sciences at MIT. “Now they can get better results, obtaining more accurate neural recordings that are less contaminated by crosstalk.”

Jun 17, 2020

Lithium-ion batteries take chemistry Nobel

Posted by in categories: chemistry, electronics

Chemistry Nobel

Olof Ramström, from the Nobel Committee, said lithium-ion batteries had “enabled the mobile world”.


Three scientists have been awarded the 2019 Nobel Prize in Chemistry for the development of lithium-ion batteries.

Continue reading “Lithium-ion batteries take chemistry Nobel” »

Jun 10, 2020

Acoustics put a fresh spin on electron transitions

Posted by in categories: electronics, quantum physics

Electrons are very much at the mercy of magnetic fields, which scientists can manipulate to control the electrons and their angular momentum—i.e. their “spin.”

A Cornell team led by Greg Fuchs, assistant professor of applied and engineering physics in the College of Engineering, in 2013 invented a new way to exert this control by using acoustic waves generated by mechanical resonators. That approach enabled the team to control electron spin transitions (also known as spin resonance) that otherwise wouldn’t be possible through conventional magnetic behavior.

The finding was a boon for anyone looking to build quantum sensors of the sort used in mobile navigation devices. However, such devices still required a magnetic control field—and therefore a bulky magnetic antenna—to drive certain spin transitions.

Jun 9, 2020

Pepsi’s $32 Billion Typo Caused Deadly Riots

Posted by in category: electronics

Imagine working in the hot streets of Manila in the early 1990s. You are a butcher, slaving away in a loud, humid market for long hours. You only make several dollars a day to support a large family.

One evening, you are holding a Pepsi bottle cap in your hand. On it is a number. You bought several of these sodas in hopes of winning a big $40,000 giveaway at the end of the promotion. This money could change your family’s life. It is a mountain of earnings in a world of limited opportunities. You watch as Pepsi begins reading off the winners on TV.

Suddenly, you realize you’ve won. Incredulous, you quadruple check your numbers. The number is accurate. Your heart begins racing as you rush to call your wife and kids. However, you, and many winners like you, will never see that money. But at least you won’t lose your life, like some.

Jun 7, 2020

A system for the nonreciprocal transmission of microwave acoustic waves

Posted by in categories: computing, electronics

Acoustic waves have been found to be highly versatile and promising carriers of information between chip-based electronic devices. This characteristic is ideal for the development of a number of electronic components, including microwave filters and transducers.

In the past, some researchers have tried to build devices in which waves are transmitted between two ports in a non-symmetric way. These are known as nonreciprocal devices. These devices could be particularly promising for the manipulation and routing of phonons, quasiparticles associated with . Building nonreciprocal devices that transmit acoustic waves, however, can be highly challenging, as typically transmit waves in a linear way.

Researchers at Harvard University have recently achieved the non-reciprocal transmission of non-reciprocal acoustic waves using a nonlinear parity-time symmetric system. This system, presented in a paper published in Nature Electronics, is based on two coupled acoustic resonators placed on a lithium niobate surface.

Jun 3, 2020

Researchers have created an OLED display that can be worn like clothing

Posted by in category: electronics

Circa 2016


The product is said to have the flexibility and durability of an OLED display, and can be applied to fabrics.

Jun 2, 2020

Automatic and scalable fault detection for mobile applications

Posted by in categories: electronics, mobile phones, robotics/AI

This paper describes the design, implementation, and evaluation of VanarSena, an automated fault finder for mobile applications (“apps’‘). The techniques in VanarSena are driven by a study of 25 million real-world crash reports of Windows Phone apps reported in 2012. Our analysis indicates that a modest number of root causes are responsible for many observed failures, but that they occur in a wide range of places in an app, requiring a wide coverage of possible execution paths. VanarSena adopts a “greybox’’ testing method, instrumenting the app binary to achieve both coverage and speed. VanarSena runs on cloud servers: the developer uploads the app binary; VanarSena then runs several app “monkeys’’ in parallel to emulate user, network, and sensor data behavior, returning a detailed report of crashes and failures. We have tested VanarSena with 3000 apps from the Windows Phone store, finding that 1108 of them had failures; VanarSena uncovered 2969 distinct bugs in existing apps, including 1227 that were not previously reported. Because we anticipate VanarSena being used in regular regression tests, testing speed is important. VanarSena uses two techniques to improve speed. First, it uses a “hit testing’’ method to quickly emulate an app by identifying which user interface controls map to the same execution handlers in the code. Second, it generates a ProcessingCompleted event to accurately determine when to start the next interaction. These features are key benefits of VanarSena’s greybox philosophy.

2014-06

http://hdl.handle.net/1721.1/110759

Page 48 of 104First4546474849505152Last