Toggle light / dark theme

Demonstration of a next-generation wavefront actuator for gravitational-wave detection

In the last decade, the Laser Interferometer Gravitational-Wave Observatory (LIGO) and the European Virgo Observatory have opened a new observational window on the universe. These cavity-enhanced laser interferometers sense spacetime strain, generated by distant astrophysical events such as black hole mergers, to an RMS fluctuation of a few parts in 1021 over a multi-kilometer baseline. Optical advancements in laser wavefront control are key to advancing the sensitivity of current detectors and enabling a planned next-generation 40 km gravitational wave observatory in the United States, known as Cosmic Explorer. We report an experimental demonstration of a wavefront control technique for gravitational-wave detection, obtained from testing a full-scale prototype on a 40 kg LIGO mirror. Our results indicate that this design can meet the unique and challenging requirements of providing higher-order precision wavefront corrections at megawatt laser power levels while introducing extremely low effective displacement noise into the interferometer. This technology will have a direct and enabling impact on the observational science, expanding the gravitational-wave detection horizon to very early times in the universe, before the first stars formed, and enabling new tests of gravity, cosmology, and dense nuclear matter.

World’s most sensitive detector tightens the net on elusive dark matter

Determining the nature of dark matter, the invisible substance that makes up most of the mass in our universe, is one of the greatest puzzles in physics. New results from the world’s most sensitive dark matter detector, LUX-ZEPLIN (LZ), have narrowed down the possibilities for one of the leading dark matter candidates: weakly interacting massive particles (WIMPs).

New adaptive optics system promises sharper gravitational-wave observations

Gravitational-wave detection technology is poised to make a big leap forward thanks to an instrumentation advance led by physicist Jonathan Richardson of the University of California, Riverside. A paper detailing the invention, published in the journal Optica, reports the successful development and testing of FROSTI, a full-scale prototype for controlling laser wavefronts at extreme power levels inside the Laser Interferometer Gravitational-Wave Observatory, or LIGO.

LIGO is an observatory that detects —ripples in spacetime caused by massive accelerating objects like merging black holes. It was the first to confirm their existence, supporting Einstein’s Theory of Relativity. LIGO uses two 4-km-long laser interferometers in Washington and Louisiana to capture these signals, opening a new window into the universe and deepening our understanding of , cosmology, and extreme states of matter.

LIGO’s mirrors are among the most precise and carefully engineered components of the observatory. Each mirror is 34 cm in diameter and 20 cm thick and weighs about 40 kg. The mirrors must remain perfectly still to detect distortions in spacetime smaller than 1/1,000th the diameter of a proton. Even the smallest vibration or environmental disturbance can overwhelm the gravitational wave signal.

The surprising new particle that could finally explain dark matter

Physicists are eyeing charged gravitinos—ultra-heavy, stable particles from supergravity theory—as possible Dark Matter candidates. Unlike axions or WIMPs, these particles carry electric charge but remain undetectable due to their scarcity. With detectors like JUNO and DUNE, researchers now have a chance to spot their unique signal, a breakthrough that could link particle physics with gravity.

3D particle-in-cell simulations demonstrate first true steady state in turbulent plasma

Plasma is a state of matter that emerges when a gas is heated to sufficiently high temperatures, prompting some electrons to become free from atoms. This state of matter has been the focus of many astrophysical studies, as predictions suggest that it would be found in the proximity of various cosmological objects, including pulsars and black holes.

Previous research findings suggest that the environment around these celestial objects is turbulent, which essentially means that magnetic fields and electric fields within it fluctuate chaotically across many scales. These chaotic fluctuations would in turn influence the movements and acceleration of particles.

Researchers have been trying to reproduce the turbulent environment associated with the emergence of in space using numerical simulations. However, they were so far unable to realize a steady state in which a system’s properties no longer change over time, such as that one might observe in real cosmic systems.

Astronomers Spot “Impossible” Fifth Image Unlocking Dark Matter Secrets

Astronomers studying a rare Einstein Cross stumbled upon an impossible “fifth image” that shouldn’t exist — and it revealed something extraordinary.

Careful analysis showed the strange light pattern could only be explained by the presence of a vast, hidden halo of dark matter bending the galaxy’s glow.

Discovery of a Cosmic Anomaly.

Primordial black holes may trigger Type Ia supernovae without companion stars

A new article published in The Astrophysical Journal explores a new theory of how Type Ia supernovae, the powerful stellar explosions that astronomers use to measure distances across the universe, might be triggered. Traditionally, these supernovae occur when a white dwarf star explodes after interacting with a companion star. But this explanation has limitations, leaving open questions about how these events line up with the consistent patterns astronomers actually observe.

Information could be a fundamental part of the universe, and may explain dark energy and dark matter

For more than a century, physics has been built on two great theories. Einstein’s general relativity explains gravity as the bending of space and time.

Quantum mechanics governs the world of particles and fields. Both work brilliantly in their own domains. But put them together and contradictions appear—especially when it comes to black holes, dark matter, and the origins of the cosmos.

My colleagues and I have been exploring a new way to bridge that divide. The idea is to treat information—not matter, not energy, not even spacetime itself—as the most fundamental ingredient of reality. We call this framework the quantum memory matrix (QMM).

The gravitino: A new candidate for dark matter

Dark matter remains one of the biggest mysteries in fundamental physics. Many theoretical proposals (axions, WIMPs) and 40 years of extensive experimental searches have failed to provide any explanation of the nature of dark matter.

Several years ago, in a theory unifying and gravity, new, radically different candidates were proposed: superheavy charged gravitinos.

Now, a paper published in Physical Review Research by scientists from the University of Warsaw and Max Planck Institute for Gravitational Physics shows how new underground detectors, in particular the JUNO detector starting soon to take data, even though designed for neutrino physics, are also extremely well suited to eventually detect charged dark matter gravitinos.

/* */