Toggle light / dark theme

Gravitational wave events hint at ‘second-generation’ black holes

In a paper published in The Astrophysical Journal Letters, the international LIGO-Virgo-KAGRA Collaboration reports on the detection of two gravitational wave events in October and November of 2024 with unusual black hole spins. This observation adds an important new piece to our understanding of the most elusive phenomena in the universe.

Gravitational waves are “ripples” in that result from cataclysmic events in deep space, with the strongest waves produced by the collision of black holes.

Using sophisticated algorithmic techniques and mathematical models, researchers are able to reconstruct many physical features of the detected black holes from the analysis of gravitational signals, such as their masses and the distance of the event from Earth, and even the speed and direction of their rotation around their axis, called spin.

Scientists Finally Hear Black Holes Ring, Confirming Hawking’s Famous Prediction

Ten years after the first detection of gravitational waves, scientists have captured the clearest signal yet — and it confirms one of Stephen Hawking’s most famous predictions.

Using the upgraded LIGO detectors, researchers observed two black holes colliding over a billion light-years away, producing space-time ripples so precise they could “hear” the black holes ring like cosmic bells.

A new window on the universe.

Saturday Citations: Yet another solution for universal expansion; computing with brain organoids

This week, researchers reported the discovery of four Late Bronze Age stone megastructures likely used for trapping herds of wild animals. Physicists have proven that a central law of thermodynamics does not apply to atomic-scale objects that are linked via quantum correlation. And two Australian Ph.D. students coded a software solution for the James Webb Space Telescope’s Aperture Masking Interferometer, which has been producing blurry images.

Additionally, researchers are networking tiny human brain organoids into a computing substrate; have proposed that environmental lead exposure may have influenced early human brain evolution; and physicists have provided a to explain accelerating universal expansion without :

‘Messy’ galaxies in the early universe struggled to settle, Webb reveals

Astronomers using the James Webb Space Telescope (JWST) have captured the most detailed look yet at how galaxies formed just a few hundred million years after the Big Bang—and found they were far more chaotic and messy than those we see today.

The team, led by researchers at the University of Cambridge, analyzed more than 250 young galaxies that existed when the universe was between 800 million and 1.5 billion years old. By studying the movement of gas within these galaxies, the researchers discovered that most were turbulent, “clumpy” systems that had not yet settled into smooth rotating disks like our own Milky Way.

Their findings, published in Monthly Notices of the Royal Astronomical Society, suggest that galaxies gradually became calmer and more ordered as the universe evolved. But in the , star formation and gravitational instabilities stirred up so much turbulence that many galaxies struggled to settle.

Exploring how dark matter alters electron-capture supernovae and the birth of neutron stars

Electron-capture supernovae (ECSNe) are stellar explosions that occur in stars with initial masses around 8–10 times that of the sun. These stars develop oxygen-neon-magnesium cores, which become unstable when electrons are captured by neon and magnesium nuclei.

The key to why the universe exists may lie in an 1800s knot idea science once dismissed

In 1867, Lord Kelvin imagined atoms as knots in the aether. The idea was soon disproven. Atoms turned out to be something else entirely. But his discarded vision may yet hold the key to why the universe exists.

Now, for the first time, Japanese physicists have shown that can arise in a realistic particle physics framework, one that also tackles deep puzzles such as neutrino masses, , and the strong CP problem.

Their findings, in Physical Review Letters, suggest these “cosmic knots” could have formed and briefly dominated in the turbulent newborn universe, collapsing in ways that favored matter over antimatter and leaving behind a unique hum in spacetime that future detectors could listen for—a rarity for a physics mystery that’s notoriously hard to probe.

Scientists Propose Quantum Network to Finally Detect Universe’s Mysterious Missing Substance

Researchers at Tohoku University have shown that linking quantum sensors in optimized networks can dramatically boost their sensitivity. Uncovering dark matter, the invisible substance thought to bind galaxies together, remains one of the greatest mysteries in physics. While it cannot be directly

New telescope opens window to southern sky

A powerful new telescope has captured its first glimpse of the cosmos, and could transform our understanding of how stars, galaxies and black holes evolve.

The 4MOST (4-meter Multi-Object Spectroscopic Telescope), mounted on the European Southern Observatory’s VISTA telescope in Chile, achieved its ‘first light’ on 18 October 2025: a milestone marking the start of its scientific mission.

Unlike a typical telescope that takes pictures of the sky, 4MOST records spectra—the detailed colors of light from —revealing their temperature, motion and chemical makeup. Using 2,436 optical fibers, each thinner than a human hair, the telescope can study thousands of stars and galaxies at once, splitting their light into 18,000 distinct color components.

Nonlocality-enabled photonic analogies unlock wormholes and multiple realities in optical systems

Researchers have harnessed nonlocal artificial materials to create optical systems that emulate parallel spaces, wormholes, and multiple realities. A single material acts as two distinct optical media or devices simultaneously, allowing light to experience different properties based on entry boundaries. Demonstrations include invisible optical tunnels and coexisting optical devices, opening new avenues for compact, multifunctional optical devices by introducing nonlocality as a new degree of freedom for light manipulation.

What if a single space could occupy two different objects at once, depending on how photons access this space? Scientists have brought this sci-fi concept to life, creating that mimic the exotic phenomena of parallel universes and wormholes.

In a study published in Nature Communications, researchers in China used nonlocal artificial materials to develop “photonic parallel spaces.”

/* */